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Frobenius Method
— and Special Functions

This chapter has been devoted to the introduction of differential equations and their applications.
These equations describe about the working of nature and help in studying the population growth, fluid
motion and many more real world problems including the launching of satelittes. The solutions to differential
equations are not numbers but the functions that describe the variation of the function. There are some
differential equations that could not be solved using the simple methods available to solve these equations.
In such a case, the solution is obtained using Power series or Frobenius method depending on the nature
of the points of the differential equation.

1. DIFFERENTIAL EQUATIONS

A differential equation is a relationship between a function of one or more independent variable and
its derivatives with respect to the independent variables. For example
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In equation (1.1) y is a function of single variable i.e. x whereas in equation (1.2) and (1.3) y is a

function of two variables i.e. x and t. These equations play a very useful role in solving physical problems
and hence are of paramount importance in physics. For example

The different equation

d?x
—= = —kx ..(L4)
dt?
is widely used to solve the problem of simple harmonic oscillator, and the equation
d?l |, . dI _
ey + 5? +81 = Ejsinwt .(L5)

is utilized in determining the current | as a function of time t in an alternating current circuit.
Differential equations can be broadly classified into two classes :

Ordinary differential equations : A differential equation which contains a function of single independent
variable and one or more of its derivatives with respect to the independent variable is called ordinary
differential equation. Equation (1.1), (1.4) and (1.5) are examples of ordinary differential equations.
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Partial differential equations : A differential equation which contains a function of two or more
independent variables and one or more of its derivatives with respect to the independent variables is
called partial differential equation. Equation (1.2) and (1.3) is an example of ordinary differential equations.
Partial differential equation will be discussed in detail in chapter 3.

Before getting the solutions of differential equations, it is necessary to get introduced with the
terminologies used in context to the differential equations. Thus the study of differential equations will be
started after clarifying some definitions.

1.1. THE ORDER OF A DIFFERENTIAL EQUATION

The order of the highest derivative involved in the equation is called the order of the differential
equation. The order of all the differential equations (1.1) — (1.5) is 2 as the highest derivative involved in
all these equations is 2.

1.2. DEGREE OF A DIFFERENTIAL EQUATION

The degree of a differential equation is the exponent of the highest order derivative present in the
differential equation. The degree of all the differential equations (1.1) — (1.5) is 1, and that of the differential
equation

(g2y)? 3
21 947y dy
2
is 2, the exponent of highest order of derivative, i.e. d_zy
dx

1.3. SOLUTION OF A DIFFERENTIAL EQUATION

A solution of a differential equation is a relation between the dependent and independent variable
without the involvement of its derivatives, but it should satisfy the given differential equation. There are
many methods to solve the differential equations; however this chapter is devoted to the solutions of
second order ordinary, homogeneous, linear differential equations of the form

2
u+ P
dx?
using power series method. In equation (1.7), P (x) and Q (x) are known functions of x. Equation (1.7) has
two linearly independent solutions y; and y,, subjected to the condition oy y1 + oy, = 0, where a4 and oy
should be zero for y; and y, to be linearly independent, so that the solution to equation (1.7) can be
represented as

() L+Q()y = o an

y = Ciy1+ G2 -(1.8)
To prove that equation (1.8) is a solution to equation (1.7), consider 1% and 2" derivatives of
equation (1.8) and substitute in equation (1.7), so that one may get
C1y"1 + Coy"2+ P (X) (C1y's+ Cay2) + Q(X) (Cry1+Cay2) =0
Such that
C1y"1 + P(X)c1y's + Q (X) Coy1 + Coy"2+ P (X) C2y'2 + Q (X) Cay2 =0
Or
L1 +PX)Y1+QX)y) +Ca(y2+P(X)y2+Q(X)y2) =0 ~(1.9)
As y; and y, be the solutions of equation (1.7) hence equation (1.9) may be written as
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¢ (0)+c(0) = 0
Proving that the general solution to equation (1.7) is given as (1.8)

2. SERIES SOLUTION OF DIFFERENTIAL EQUATION

Any arbitrary second order linear differential equation (SOLDE) of the form

d? d
Po(X)dT;l+P1(X)d—i+P2(X)y =0 ~(2.1)

can be converted into the general form of differential equation (1.7) by dividing equation (2.1) with Pgy(x),
such that equation (2.1) can be rewritten as

2
d?y RO P

=0
dx2  Po(x) dx Py (x)

P (X) Py (x)
Po () ™ Q=55

on the nature of P(x) and Q(x), the ordinary and singular points of the SOLDE can be defined.

Sothat P(x)=

, Where P(x) and Q(x) may or may not be finite. Depending

(@) Ordinary Point of a Differential Equation

The point X is said to be an ordinary point of the differential equation (1.7) if both P (x) and Q (x) are
analytical (A function which is finite at every point and its neighbourhood) at x = Xy, i.e., they are finite at

X=Xg
(b) Singular Point of a Differential Equation

The point X is said to be a singular point of the differential equation (1.7) if both P(x) and Q(x) or one
of them fails to be analytical at x = X, i.e. they becomes infinite at x = Xg. Singular point may further be
classified into two categories.

Regular Singular Point : If x = Xg is a singular point of differential equation but both

lim (x—xg)P(x)
X—>X0

and lim (x-x%0)% Q(x)
X—>Xo

are finite, the singular point xq is said to be regular singular point of equation (1.7)
Irregular Singular Point : If X = Xg is a singular point of differential equation and both or one of the
limits
lim (x—xg)P(x)
X—>Xo

and lim (x-x%0)% Q(x)
X—>X0

becomes infinite, the singular point X is said to be irregular singular point of equation (1.7). The
above classification is mandatory as the solution of SOLDE depends on the nature of P (x) and Q (X).
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Example 2.1. Check if x = 0 is an analytical point or not for the differential equation.

d2y dy 2 _
o2 +Xgot (xX°+2)y =0 .(2.2)

Solution : Comparing equation (2.2) to equation (1.7) one gets
PX = 0andQ(X)=x2+2
Which are both finite at x = 0 making x = 0 an analytical point of equation (2.2)
Example 2.2. Check the behaviour of point x = 0 for the differential equation
d2y 6
——y =0 ..(2.3
dx? X @3
Solution : Comparing equation (2.3) to equation (1.7) one gets
—6
PX) = 0andQ (x) = ~

Here P (x) is finite for x = 0 but Q (x) is infinite making x = 0 a singular point. Thus to check the
behaviour of x = 0 for Q (x) consider

. -6
Lim x—OZ(—) = Lim(-6x) = ini
x—>0( )" | )I(_ercl)( 6x) = 0 — finite

Since the limit is finite for x = 0. Hence x = 0 is a regular singular point of equation (2.3)
Example 2.3. For the given differential equation

2
2d7Y o WY g -
4x o +3x ot @d=2x)y =0 (2.4)

Check if x = 0 is an analytic point or not.
Solution : Converting equation (2.4) to general SOLDE one gets

d’y 3 dy . (-2 _
o A dx g2 ) 70

3
4x

1

Providing P(x) = o

and Q(x) = ﬁ -

which becomes infinite at x = 0, thus x = 0 is not an analytic point, but a singular point. To check the
behaviour of singularity consider

. 3 .3 3.
Lim (x—0)— = Lim = =—finite
x—>0( ) 4x x—0 4
. 2( 1 2
Lim (x-0 (———) = Li - =1 = fini
X_)0( ) 2 X )I(_Lna (1-2x) = 1 = finite

Since the two limits are finite hence x = 0 is a regular singularity.
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2.1. SERIES SOLUTION WHEN X = X IS AN ORDINARY POINT (POWER SERIES
METHOD)

The general series solution to equation (2.1) is given as

> apx" .(2.5)
n=0

y
If X = Xg is an ordinary point such that

0

dy 1
y' = a=Znanx”

n=0
d?y & 2
And Y= d7=[§)n(n—1)anx"

Substituting the values of y, y', y” in equation (2.4), one will get the result as

o0 o0 o0
Po(x) D n(n-1)apx"2 +Py (x) Y napx"+P,(x) > apx" =0
n=0 n=0 n=0
Simplifying the equation and comparing the coefficients of x and its exponents (powers) equal to
zero, one will be able to find the values of different a,’s in terms of ag and a;. Substituting the values of
a,’s obtained in equation (2.5), the solution to equation (2.1) could be obtained.

2
Example 2.4. Solve the SOLDE (1 + x?2 d_y+ Xd_y_ = 0 using power series method.
( )dX2 o
Solution : The differential equation
d?y  dy
2 —
(1+x )dX2 XY =0 ..(2.6)
can be rewritten as
d?y  x dy 1
+ - y =
dx?2  (1+x2) X (1+x?) 0
Such that P(x) =;2 and Q(x)=(1—xz) are finite for all real numbers, hence no singular
(1+x4) + X

point exists for the differential equation (2.6). The general series solution to the equation is

e}
y = > apx"
n=0
o0
such that y' = Znanxn_l
n=0
o0
And y'' = Zn(n—l)anx"‘z

n=0
Substituting the values of y, y’, y"' in equation (2.6) one can obtain the relation

o0 o0 o0
(1+x2) > n(n-1) anx"? +x Znanx”‘1 - Yapx" =0
n=0 n=0 n=0
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o0

o0 o0 o0
Or Zn(n—l)anx”‘2 + > n(n-1apx" + > nax" - apx" =0
n=0 n=0 n=0

n=0

Or Zn(n—l)anx”‘2 +> (n(n-1)+n-1)a,x" =0

n=0 n=0

o0 o0
S n(n-1apx"2+3Y (n2-1)ayx" =

n=0 n=0
Equating the coefficients of x" on both sides one can obtain, x" in the first term could be achieved by

replacingn=n+2
(+2) (n+1) ane +("*-1) &

1
o

(n?2-1) (n-1)
Such that A+ = “n+2)(n+1) ap =-— (n+2)
It is known as the recurrence relation, useful for finding the terms of a sequence in a recursive
manner. Substitutingn =0, 1, 2, 3, 4 ...., one can obtain the values of a,’s in terms of ag and a; as

a, = %ao, ag = %al=0,
a4 = —%az :—%.%ao as = %ag =%. 0=0,
a5 = ——ay :(—1)2%.%%% a; = %ag, =§.0 -0
ag = ——ag=(-1)° %%%% ag

Such that ay, = (—1)n_1%ao

[The double factorial (!!) also known as factorial of (2n — 3) is the product of all odd integers upto
2n 3]

And an+1 = 0

Thus the solution to equation (2.6) is

Yy = ag+axl+at +agl + .+ apx + ag + agxX® + agx'+ ...
o0 o0
or y = Yagnx®"+ Yagp,x?nt 2.7
= =0
Substituting the value of a,,, and ayp+1 calculated above in egn. (2.7) one obtains
2n-3)!
or = ap Z (-1t ( |)
Mt

Example 2.5. Solve the SOLDE y" + xy' +y = 0 using power series method.
Solution : The differential equation
y'+xy'+y = 0 ..(2.8)
is already in its general form with P (x) = x and Q (x) = 1 finite for all real numbers, hence no singular
point exists for the differential equation (2.8). The general series solution to the equation is
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o0
y = D> apx"
n=0
such that
o0
y = Y.napx"?
n=0
And

o0
y" = Zn(n—l)anx”‘2
n=0

Substituting the values of y, y’, y" in equation (2.8) one can obtain the relation

o0

o0 o0
Zn(n—l)anx”‘2 +xZnanx”‘1 + > apx" =0
n=0

n=0 n=0
o0 o0 o0
or > n(n-1)ax"2 + > nagx" + > ayx" =0
n=0 n=0 n=0
o0 o0
or Zn(n—l)anx”‘2+2(n+l)anx” =0
n=0 n=0

Equating the coefficients of x" on both sides one can obtain
h+2)(n+ a2+ (n+1)a, =0
Such that

_ n+1 __ 1
2 S g " ey

Substitutingn =0, 1, 2, 3, 4,...., one can obtain the values of a,'s in terms of ag and a; as

1 1
a, = —an, ag = —Ea]_,
1 11 1, 1
ag =~ :(—1)27.?a0 as = 5355 A
I IPPRPEY: B N Ll -1 4
%= g s g 7= 7%= 753"
(=" (1"
= a = ——"——a
azn on N 0 Aon+1 (2n+1)|| 1

Thus the solution to equation (2.6) can be obtained by substituting the value a,, and ayy, + 1 in eqn.
(2.5) as
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( )" x2n+l

2n+ 1)

+az(

Example 2.6. Solve the differential equation F +c02y = 0 using series method.
X

Solution : The differential egn. is already in general form with P (x) = 0 and Q (x) = 1, Hence there is
no singular point for the differential eqn. The general series solution of the eqgn. is

< n
y = Zanx

n=0

- 1
such that y' = yonax"

< 2
and y" = Y n(n-1)ax"

n=0

Substituting the values of y, y" and y” in the given eqn. one gets

(oo}

o0
> n(n-1) a x"%+ (Dzz ax" =0
n=0

n=0
or Ynh(n-1)a,+o%a, ) x"2 = 0
Equating the coefficients of X", one gets
n(n-1)a, + w?a,, = 0
2
r 4y = - —
0 n n(n-1)
Substituting n = 2 one get,
2
a, = -2
2 2 a()
Similarly substituting n = 3 in the recurrence relation of a, one gets
2
= -9 4
8 = T2
Proceeding in the same way one gets
(02
a = _ —
! 2320 D’ 4 320
w2 ) ot
= = (-1
a5 = ~gra= (D grama
b

8 = 8 = (-1’ 5432a0
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a; = (% a
7 76543211
_ (_Dann
_ (D%
Gn+1 = Topipr &

So that the solution to the given differential egn. could be obtained as

o0
n 2n 2n+1.
D aX" = D (@ X +ag, X )

y =
n=0
_ 5 (—1)n(02n (1)n(u2 X2
y = nZ::0 (2n)! Z @+D1 >
Substituting (=1) = i® and considering a; = (-1)" (imag) one gets
_ (iox)>" n (|o)x)2n+1
y = Z ent o7 Z( Y anspr

or y = ape'® = ag [cos X + i sin wx]

2.2. SERIES SOLUTION WHEN x = X IS A REGULAR SINGULAR POINT
(FROBENIUS METHOD)

The general power series solution will not be the solution to equation (1.7) anymore and could be
proved by rewriting the equation (1.7) as follows

d
= —P(x)d—i—Q(x)y -(2.9)

o0
If y= Z a,x" is the solution to the above equation around x = X, a regular singular point, then y,

y’ and y" are analytic at x = Xg, which implies left hand side (LHS) of equation (2.9) is finite and analytic.
On the right hand side (RHS), either P(x) or Q(x) or both fail to be analytic indicating that LHS = RHS.

0
Hence y = Z a,x" cannot be a solution to equation (1.7). But the solution is still achievable in terms of
n=0
infinite series. The method of finding the solution in terms of infinite series for a second order linear
differential equation having a regular singular point is known as method of Frobenius. The method
assumes that for x = xg, as a regular singular point, the solution of equation (1.7) has the general form

ian (X—xg )" ...(2.10)
n=0
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Where a is a constant to be determined by comparing the coefficients of lowest power of x — xg on
both sides subjected to the condition that ag = 0. This generally provides a quadratic equation in o,
providing two values of o and is known as the indicial equation. The method of solution is similar to that
for an ordinary point except that the values of o obtained using the indicial equation, sometimes also
called characteristic equation, are also substituted back in the solution of equation (2.10) to obtain two
different solutions.

Example 2.7. Check whether Frobenius method can be applied or not to the following equation.

2
%—% =0 L@2.11)

Solution : Comparing the given equation to equation (1.7) one gets

5
PO =0 QW=""3
Hence x = 0 is not an analytical point. Thus to check the nature of singularity consider

Lim (x=0)2Q(x) = Lim xz(—%) —_Lim>
x—0 x—0 X x—0 X

Thus x = 0 is not a regular singularity, Hence Frobenius method could not be applied to solve
differential equation (2.11)

Example 2.8. Solve in series the following differential equation
2
d
2x2 4y _ X

2 d—i+(1—x2)y =0 (2.12)
X

Solution : The given equation can be rewritten as

2 g2
dey 1dy+(1><)

dx2_2xdx x 2 y =0

(1-x%)

Such that P(x):—2—1X and Q(x)= 2
X

becomes infinite at x = 0 making it a singular point.
The next step is to check the nature of singularity using the relations
lim (x—=xg)P(x)
X=X
and lim (x=x9)2Q(x)
X—>X0

for the given equation. Thus

. 1
lim—-(x-0)— = _1 = Fini
lim ( )2x 1 = Finite
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. 1-x2
and Ilm(X—O)Z% = 1= Finite
x—0 X

Hence x = 0 is a regular singular point and thus the equation can be solved by using Frobenius
method. The general solution to the given equation (2.12) will be considered as

o0
y = zzanxn+a
n=0

o0

So that y' = Yap(n+a)x"od
n=0

and y' = >an (n+a)(n+oa-1)x"e?
n=0

Substituting the values of y, y’, y" in equation (2.12), one can obtain
o0 0 o0
2x2 Y ag (n+a)(n+a-1)x"*2 —x Y ap (n+o)x"e +(1— x2) >apx™®* =0
n=0

n=0 n=0

or Zian (n+a)(n+oa-1)x"e - ian (n+a)x™* + ianx”” - ianx”*"‘*2 =0
n=0 n=0 n=0 n=0

O Yan(2(n+a)(n+a-1)-(1+a)+Ix™ - a2 =0
n=0 n=0

or ian ((n+oc)(2(n+a—1)—1)+1)x”+°‘ - i“anx”““2 =0
n=0 n=0

or ian ((n+oc)(2n+2a—3)+1)x”+°‘ - ianxnﬂHZ =0
n=0 n=0

Or ian (2(n+oc)—1)(n+oc—1)x”+°‘ - ianxnﬂHZ =0
n=0 n=0

Equating the coefficients of lowest power of x, i.e., x* on both sides one can obtain
ag(a-1)(a-1) =0
As ag # 0, hence (2o — 1) (o — 1) = 0, which is an indicial equation as explained in previous section
and provides the value of a as

1
= lor =
o 2

Comparing the coefficients of x** 1, one can obtain
aRAL+w)-1)(1+a-1) =0
Or aaat+tl) =0
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a, should be equal to zeroas a = 1or % and hence a (20 + 1) can’t be zero. Equating the coefficients

of x"* ¢, the following recurrence relation could be observed

ian (Z(n +oc)—1)(n+oc—l)xn+0‘ _ ianxnﬂ“z 0
n=0

n=0
ap_2
Or an = ..(2.13
"7 Gnsza-d(nra] @1
Since a; is zero, hence ag = ag = a7 = ... = 0, find the values of even a’,s, substitute the values of
n=24p6, .. in equation (2.13)
1
= ———a
2 = 2a+3)(atl) 0
as = 1 ao = 1 a
4T Qar7)(@+3) 2T 2a+7)(20+3)(a+l)(ar3) ©
ag = 1 ag = 1 a
6 (200+11) (o +5) 4 (20+11) (2a+7)(20+3) (o +1) (o +3) (o +5) 0
- 1
oy =

a
(2a+4n-1)..(2a+11)(20+7)(20+3) (a+1) (o +3) (a+5)...(+2n-1) 0
When o = 1, the expression of a,, reduces to

1 1

ayy = ap = ap
7 (4n+1)..1395246..2n 2"ni(4n+1)...13.95
When a :%, the expression of a,, reduces to
1 , 1 , 1 ,
= an = apg = a
%2n 37 11 4n-1 % o 371L.4n-1 0 onpi3711 dn_1°
4n.. 1284 = ——..———— 4" nl———r—= L
2272 2 on
[The coefficient of expansion is different from ag and hence is considered as ag']
So that the generalized solution of equation (2.12) could be written as
0 0 2net
y = ap ), L x2Ml 1 an L x" 2
o0 2" nl(4n+1)...13.95 02" n13.7.11...4n-1

_{ Quick Review

* Working steps for Frobenius method of solution

1. Consider y = Y ayx™* and then find y’ and y".
n=0
2. Equate the co-efficient of lowest power of x to find o

3. Equate the co-efficient of x"** to find the a,'s for the two values of o.
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Example 2.9. Discuss whether two Frobenius series solutions exist or not for the given differential
equation.

2%y +x (x + 1)y’ —(cosx)y = 0 .(2.14)

Solution : The Frobenius solutions exists for given differential equation if the difference between the
roots ry and r, of the quadric equation

P+pP@O)-1r+q@©) =0 ..(2.15)

2
isnon-zeroi.e., ry —r, #0, here r= de_;/, r=—=— xdy and 1= 17}
dx dx dx -

The given egn. (2.14) could be put in the r form by dividing it with 2 such that

N (x+1) Xy’ — (cos x)

Xy 2 5 =0
. x+1 COS X
with p(x) = > and q(x) = — > such that p(0) = and q(0) = —-, so that egn. (2.15) becomes
2 (1 1
r -+ E—l)r -5 = 0
1 1
Or I‘2 —Er—? = O
or 2P —r-1 =
or @r+1)(r-1) =
-1
or r = 1, T
_ 1/_3
so that rl—rz-l( 2)—2¢0

Hence two Frobenius series solutions for the given equation exist.
Example 2.10. Solve the differential equation
5XY" +x (x+1)y' -y =0 ...(2.16)
using Frobenius method.
Solution : The given equation can be rewritten as
d2y N X+1 dy 1

ol T x5z’ T O

such that P (x) = and Q(X) = 5 2 becomes infinite at x = 0 making it a singular point. The

next step is to check the nature of singularity using the relations
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. . 1 .oox+1 1
lim (X—=X%)P(X) = Ilim (x=0 X+ _ lim = —=fini
x—>x0( O) ) x—>0( ) 5X x>0 5 5 inite
lim (x=x)° Q) = fim (x-0)>—% = L  fini
and aith X0 )!ino (x=0) &2 5 finite

Since the two limits are finite hence the differential equation (2.14) has x = 0 as a regular singular
point and thus could be solved using Frobenius method with

)
n+o
y = Z anX
n=0

8

> ay(n+ o)xmret
-0

<
I

S

Y > ay(n+a)(n+a-1x"e?
n=

Such that eqgn. (2.14) could be rewritten as

0 © "
5x° Y ap(n+a) (n+a-Dx" "2 4x(x+1) Y a,(n+a)x™ = Y a x""*=0
n=0 n=0 =

o o0 o0 ©
n n
or 5 Z an(n+a)(n+a—1)x”+°‘ + Z a,(n +OL)Xn+a+1 +Z a (n+0)X to Z a,x ro _ .

n=0 n=0 n=0 n=0

o o0
or Z Bh+a)(n+a-1) + (n +oa)—1]anxn+°‘ + Z a, (N+a) Kl g

n=0 n=0

& o0
o Y [(+a-1) GMh+a)+Dlax™* + S a, (1+a) x" =0

n=0 n=0

& o0
or Y (n+a-1)6n+50+Dax"+ Y (n+a)ax" =0

n=0 o

Comparing the coefficients of x™ * ® on both sides one gets
(h+a-1)Gn+5a+)a,+(n+a—-1)a,4= 0
n+a-1) 1

or = T 1o-1) Bnibutd "7 Bntbg+1ont
Comparing the coefficients of x*, one gets
(-1 Ba+tl)ag =0
as ap # OHence(a—1) ba+1)=0
= o =1-1/5

Comparing the coefficients of x*** one gets
aBa+6)ag+aay =0
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)
or A = T 5u46
2
4, = —— _a= D73
2 500 +11 1" (50.+6) (50.+11)
3
4 = — - _a - (14
3 7 Ba+15 2" (5a.+6) (5a.+11) (50.+16)
"
a, = (=D "ay

(50,1 6) (50, +11) (50 +16) ... (5 +5n+1)

for =1, a, becomes

(-1)"ay
11.16.21....(5n+ 6)

1
and for a = - 3 a,, becomes

(D8 (D"ay _ (D)"ay
% = 5101550 5" (1.23.n)  5'n!

So that the solutions to egn. (2.14) is given as

0 1

y = Z (D" a, Xn+1+§: (_1)nao, X”‘E

£1116.21...5n+6 L g
[o'0) n oo} n
_ (-1) a il 15w 1[-x
or Y= 2 isat s X X Xl
n=0 n=0
o0 n
_ (=D "a N+l -1/5 —x/5 5 ow(=x)"
or y = %11.16.21 ..... sni6 . ¢ ° e =Z‘6 ol
= n=

3. LEGENDRE’S DIFFERENTIAL EQUATION AND IT'S SOLUTION

Legendre's differential equation is a particular 2" order linear differential equation which has a wide
application in different branches of physics.

The differential equation

d?y _ dy
1-x2)—Z —2x—=—+1(1+1 =
( ) 2 ™ (I+1)y =0 -(3.1)
is called Legendre’s equation of I order and its solutions are called Legendre’s Polynomials. The equation

is of considerable importance in solving the spherical harmonics in quantum mechanics, nuclear physics,
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etc. The equation can be rewritten as
d?y __ax dy  1(+D
dx?  (1-x%) I (1-x?)

I(1+1 o o
2—X2 and Q(x) =g becomes infinite at x = + 1 making it a singular
(1-x%) (1-%%)

point. The next step is to check the nature of singularity using the relations

lim (x—Xg)P(x)
X=X

Such that P(x) =-

and lim (x-x0)%Q(x)
X—>X0
for Legendre’s equation. Thus
: 2X
lim (1£X)—=="— _ 1 _ pini
X_)ﬂ( )(1_X2) = 1 = Finite
. 1(1+1)
and lim (x+1)>—=—>= = 0= Finite
x—>+1 1-X

Hence x = + 1 is a regular singular point and thus the equation can be solved using Frobenius method
in series of ascending or descending powers of x. However the solution in descending powers of x is
more useful and hence the Legendre’s equation will be solved in descending powers of x in this chapter.
The general solution of equation (3.1) will be considered as

o0
y = Dapx®"
n=0

So that y' = >ag(a-n)x* "t
n=0

and y' = Yap(a-n)(a-n-1)x*"2
n=0

Substituting the values of y, y’, y”" in equation (3.1), one can obtain

1-x%) Y ap (a-n)(a-n-1)x* "2 -2x >ay (a—n)x* " +1(1+1) Y apx*™" =0
n=0 n=0 n=0

o 2.an (a—n)(oa—n-1)x*""2 D> ap(a-n)(a-n-1)x*"-2 D ap (a—n)x*"
n=0 n=0 n=0

+(1+1) Y apx* ™" —g
n=0

O Fan (o-mla-n-1)x*"2 - Tan fa-r)fa-n-3+2(a—n) -1 +1] x" =0
n=0 n=0

(oo} (oo}

or Yap(a-n)a-n-1)x*"2-%a, {(a—n)(a—n+1)—l(l +1)}x°“” =0

n=0 n=0
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o0 0

Or nE‘)an (o0 —n)(@—n-1)x*""2 _nZ:‘E)an {(a—n—l)(oc—n+| +1)}X(x—n -0

Equating the coefficients of highest power of x, i.e. x* (by substituting n = 0 in second term of the
above eqgn.) on both sides one can obtain

a{(a-N(@+1+1)} =0
As ay # 0, hence (a.—I) (o + 1 + 1) = 0, which is an indicial equation and provides the value of o as
a =lor-1-1
Comparing the coefficients of x*~1, one can obtain
a{(la-1-D(@+D} =0

a; should be equal to zero as the above equation provides oo =1 + 1 or — I, which is not possible as
the values o have already been found. Equating the coefficients of x*™, the following recurrence relation
could be observed

ano(@-n+2)(a—-n+1)-a,(x—=n N(a-n+1+1)=0

(oc—n+2)(0c—n+1) (oc—n+2)(oc—n+1)
o T e Nantl+) "2 (an-a)(ta-nil) " ~(32)
Since a; is zero, hence ag = a5 = a7 = .... = 0, to find the values of even a,’s, substitute the values of

n=24,6 ... in equation (3.2)

—a(a-1)
(1 2-—a)(l+a-1) 20

a, =

_ (0-2)(a-3)
U= (2-a)(1+0-3)

a(a-1)(aa-2)(a—3)
(I+4—a)(+2-0)(l+a-D(I+0-3) 0

ap=(-1)*

_ —(a—-4)(a-5)
" (1+6-0a)(l+a—5)

o(a-1)(a-2)(a-3)(a—4)(a-5)
(I+6-a)(I+4-a)(1+2-a)(I+a-1)(I+a-3) (I+a-5) 4o

as=(-1)3

a(o-1)(a—2)(a—3)...(a—2n+1)
(I+2n-a)...(1+4-a)(1+2-a)(I+a-1)(I1+a-3)...(I+a—2n+1) %

agn = (_1) n

When o, = |, the expression of a,,, redues to

1 (1-1)(1-2) (1-3)....(1-2n+1)

an = (D' 5 a2 @D 21-3). 2l 2neD) 2
_ (" [(1-1)(1-2)(1-3)....(1-2n+1) a
2" n1(21-1)(21-3)....(21-2n+1)
When o = - | -1, the expression of ayy, reduces to
a (+1)+2)(1+3)(1+4)...(1-2n)
A = (-1)

(21+2n+1).. (21+5)(21+3)2.4..2n 20
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(1+D(1+2)(1+3)(1+4)..(1-2n) _,
2" n!(21+3) (21+5)...(21+2n+1) °

[ag is diffeent than ag]
So that the generalized solution of Legendre’s equation could be written as
& 1(1-1)-2)(1-3)...(1-2n+1) |_
y = a > (-)"— x!=2n
h=0 2" n1(21-1)(21-3)....(21-2n+1)

g i (L+1)(I+2)(I+3) (1+4)..(1-2n) (—1-2n-1
noo 2" n! (21+3)(21+5)....(21+2n+1)
or y = aPi(x)+a’ Q(x)
Here P, (x) is known as Legendre's function of first kind and Q, (x) is Legendre's function of second
kind.

.(33)

—{ Quick Review

* Working steps for solution of Legendre’s differential equation

1. Consider y = Zan x% N and findy’ and y".
n=0
2. Equate the highest power of x to find the values of o
3. Equate the co-efficient of x*™ to find the a,'s for the two values of a.

3.1. LEGENDRE’'S POLYNOMIALS P_ (X)

Legendre’s polynomials P, (x) are the polynomials satisfying the Legendre’s differential equation. The
first part of equation (3.3) is known as Legendre’s polynomials of first kind and more generally Legendre
polynomials and a few of these polynomials are

Pi()=1Po(x)=1

(34)

These polynomials have been derived using generating function of Legendre’s function in next
sections.

3.2. RODRIGUE’'S FORMULA

The result

|
P(x) = ﬁ;T(xz—l)' .(35)

is known as Rodrigue’s formula to represent Legendre’s polynomials.


lenovo
Highlight
different
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To prove Rodrigue’s formula, consider

F= (-1 .(3.6)
Differentiating expression (3.6) with respect to x, one can obtain
dF
- _ 2 _ 1\
X - 2x1 (x=—1)
dF
or (2 -9== = 201 (- 1) (- 1) = 24 (- 1)
dx
dF
2 _ —
or (x2-1 — = AF .(37)

Differentiating equation (3.7) (I + 1) times using Libnitz formula, obtain

(x2 - ) d"*?F +2x(|+1) dIJIrlllz +I(I+1) d'F =2xl a' +2I(I+1)dI—F

dx 2 dx'* dx'! dx' dx'!
d'"2F d"™F d'F g d'F
or [x2-)4—~ i 2 (2 —2|(|+1)d7=0
d|+2F d|+lF dIF
o (x?-1) Tt xS =0
d' (d'F) .. d(d'F) d'F
or (1 X )dx' o)™ 2de ” +I(1+1)=— ™ =0

Thus

) (d' (x2-1')
(d'F) _ (x ) ) [From equation (3.6)]

ax! dx!
is a solution to Legendre’s differential equation. P, (X) is also a solution to Legendre’s differential equation,
hence

dx!

d 1)
The constant of proportionality can be determined by evaluating (TJ atx=1

B G R LA P PO}

dx! dx
Using Libnitz formula to differentiate LHS one can have

dl(x2-1)!

| (x+1)';j (x-'+1 d (x+1)' d (x _p)
dx

(- 1) (x+1)' 22 (x=1)" ... +1 ;XI__ll (x+1)'%(x—1)' +(x—1)'37||(x+1)'
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d! (x%-1)'
dx!

It (x + 1) + 2 (x + 1) - I_gl (x—1) + P (I - 12 (x + 1)'-2%(%1)2 +

s (x—l)l‘ll—zl (x+1)+

Substituting x = 1, one can have

L y2 1l
u = |!(1+]_)|+|2(1+1)|—l ﬂ (1_1)+|2(|_1)2(1+1)|_2
dx 2
%(1—1)2 12 (1—1)1—1'_2! L+1)+
dI(X2 _1)| |
o o |, =2
1 (dl(xz—l)'\
e P = o U ad

(x-1'n

1-1n

Additional Information (Libnitz Formula of nth order differentiation)

The Leibniz formula reveals the nth order differentiation of the product of two functions. Assume
that u(x) and v(x) are the functions of x, having derivatives up to nth order. The first order differentiation

of the function is given as
du(x)v(x) du(x)
dx dx
The second differentiation of the function yields

d2u(x)v(x) d2v(x) d2u(x) . dv(x) du(x)
—dx2 = u(x) ) +Vv(x) ) +2 i i

= u(x) dvd(XX) +Vv(x)

Likewise the third derivative is given as

3 3 3 2 2
du(x)v(x) _ u(x)d v(X) +v(x)d u(x)+3d v(x) du(x) +?,d u(x) dv
dx3 dx3 dx3 dx2  dx dx2  dx

Proceeding in a similar way, one may obtain

n n n-1 2 n-2
d"u(x)v(x) _ u(x)d V(X) +ndu(x) d V_(1X) +n(n—1)d ugx) . d n\i(zx) .
dx" dx" dx dx" dx dx
n-1 n
nd u(x) dv(x) +v(x)d u(x)
dx "1 dx dx"

This formula is called Libnitz Formula
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Example 3.1. Express f (x) = x3 — 5x? + x + 2 in terms of Legendre’s polynomials
Solution : The highest power in the expression is 3, used in P3 (x), thus
2 3 1
X = =P (x)+ X Ps(¥) = 5 (5x% - 3X)]

So f(x) = X3—5X2+X+2:%P3(X)+%X—5X2+X+2 :%P3(x)—5x2+%x+2

8
5

X+2= %Pg (x) —%Pz (x)+%x+l

:%Ps(x)—s[%Pz(x)Hh :

3
1
[Here P, (x) = > (3% -1)]
=EP5 () =222 (X)+ 2Py () + 2P ()

3.3. GENERATING FUNCTION OF LEGENDRE'S POLYNOMIALS

Generating functions are useful mathematical tools to represent an infinite sequence. It is a single
function which encodes the sequence. The generating function of Legendre’s polynomial is

1 c |
) = ———=) P (X)t',(t<]1) ..(38
9600 1-2xt+t2 |§) ! 39

Thus P (x) is a coefficient of t' in the expansion of g (x, t). To prove it consider the binomial
expansion of g (x, t)

(L—2xt+ ) 2=[1- (2xt- )12 = 1+%(2xt—t2)+%(2xt—t2 )2 +%(2xt—t2 2+

2
Or (1-2xt+t2)V2 =14 xt—t7+§x2t2 1344 3443, 5,33 6 15,244 +%xt5

2 8 2 2 4
Or (1-2xt+t2)V2 =1+ xt+%(3x2 —1)t? +%(5x2 —3x)t3 +%(35x4 —30x2 +3)t* +...

or (1-2xt+t2)~Y2 =1+ xt+%(3x2 ~1)t2 +%(5x2 ~3x)t3 +%(35x4 ~30%x2 +3)t4 +...

Or (1-2xt+t2)7Y2 = py (x)+ P, (X)t+P, (X)t2 +Pg (x)t3 + P4 (x)t* +...:iP| (x)t!
1=0

Example 3.2. ShowthatP; (1) =1
Solution : Consider the generating function of P, (x) and let x = 1, such that

1 ipl @t
J1-2t+t2 1=0

Or -9t = ipl @t
1=0
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or 1+t+2+8+. = > POt
1=0
or th= YAt
1=0 1=0
Comparing both sides, one gets
P =1

Example 3.3. Show that P; (- x) = (1) P, (X)

Solution : Consider the generating function of P, (x) and changing t to —t, equation (3.8) can be
rewritten as

1 > P (1))

\/1+2xt+t2 1=0

Or it can be rearranged as

1 _ SR (ot
J1-2(=x)t+t? 1=0

Or iP. -0t = 2D R ot
1=0 1=0

Comparing the two sides one may get

Pi-X) = (1)'Py(x)

Example 3.4. Show that Py (x) =1
Solution : Using the generating function relation (3.8) and substituting | = 0, one gets

1

\/1+2xt+t2

Expanding the left hand side and comparing the coefficients of t° one gets

= Po()t°

2
Po () 0= 1+ Xt—%+%x2t2 +%t4 —%xt3 +%x3t3 {6 —%xzt4 +%xt5
Comparing the coefficient of t° on both sides, one gets

Po()=1
3.4. RECURRENCE RELATIONS

Various recurrence relations of the Legendre polynomials can be obtained from the generating function
(1 + 2xt + 12712, The recurrence relations of Legendre’s polynomials along with their establishment from
the generating function have been discussed one by one

(@) (I+1) Py (%) = (21 +1) xP (X) = | Py (X)
To prove it consider the differentiation of both sides of equation (3.8) with respect to t, such that

o 2y-12 _ iw |
r-2xtet?) th)H(X)t
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1 2\-32 - % 1-1
Or —?(—2x+2t)(1—2xt+t ) = E’;IPI(X)t
Or (x-t)(Q-2xt+1t3)3R2 = ilm(x)t"1 .(3.9)
1=0

Multiplying the two sides with (1 — 2xt + t2), one can get

(X—1) (L-2xt+ 312 = (1-2xt+t2 )i 1P )t

1=0
or (x—t)i P (X))t = ilﬂ(x)t"l—inIH(x)t'+§IP|(x)t'+1
1=0 1=0 1=0 1=0
or xi P,(x)t'—i Pt = ilP,(x)t"l—ZXilP|(x)t'+ilP|(x)t'+1
1=0 1=0 1=0 1=0 =0

Equating the coefficients of t' on both sides, one can get

XPr ) =P (%) = (1+1)Proq () =2xIP () + (I1-1) P_1 (X)
Rearranging the terms one will be able to achieve the result

I+ P (X) = @I+1)xP(X)= 1P _1 (X) ..(3.10)
(b) Pre1 () = Pi(x) +2xP"y (x) = P'1-1 (X)
To prove it consider the differentiation of both sides of equation (3.8) with respect to x, such that

d - |
agm (x)t

d 2\-1/2
—(1-2 t
i ( xt+t<)

t (1 - 2xt + 232

> oot .(3.12)
1=0

Multiplying the two sides with (1 — 2xt + t2), one can get

o0

/ |

t-2xt+ )12 = (1-2x+1) 2Pt
1=0

§P| (X)t|+1

1=0

iP{(x)t' —2x§P|’(x)t'+1 +§P|’(x)t'+2
1=0 1=0 1=0

Comparing the coefficients of t' on both sides one may get
Py (®) = P () —2xP1_1 (}) + P -2 (%)
Rearranging the terms one will be able to achieve the result
P = Poa () +2xP 1 () —P1-2(X)
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achieve
(I + )Py () = @I+ 1) xPy () + @1+ 1) Py (x) =1 (P () + 2xP'1 (X) = P'r 41 (X))
Or I+D)P 1) =Q@+DxPxX)+R+DP)-IP)—2XIP, () + 1P+ 1 (X)
Or Pler (X) = xP 1 () + (1 + 1) Py (X)

Replacing | by | + 1, the required recurrence relation can be established as

Plar(X) = Pr(¥)+2xP" (X) - P11 (X)
© 1P (x) = xP () - P'1_1(X)
Dividing equation (3.9) with (3.11), one can achieve

(x-1) _ 2P oot

t >Rt
Or (x-t) Y Pr(x)th = tilP,(x)t"l
1=0 1=0
or XY POt = R0t = iRy (0t
1=0 1=0 1=0

Comparing the coefficients of t' on both sides one may get
XP' (%) =P'g-1y X) = 1P (X)
(d) XP'i () = 1P () = P’ (X)
Differentiating recurrence relation (3.10) with respect to x results in
(I+1Pgepny(®) = @+ xP1()+ @I+ 1)P(x)—1P1 (X)

(3.12)

.(3.13)

Substituting the value of P’'(I — 1) (x) from recurrence relation b in the above equation, one can

Replacing | by | — 1 and rearranging the terms the required recurrence relation can be established as

XP'iia () =1P_1 () = P'I(X)
©) =P (x) = xIP () -1P_1(X)
Multiplying recurrence relation (3.13) with x one can obtain
P (X)=xPg () = xIP(X)

(3.14)

.(3.15)

Substituting the value of x P’ _ 1(x) from recurrence relation (3.14) in equation (3.15), the equation can
be rewritten as

X?P' () = 1Py _1 () =P (X)
Rearranging the terms one can obtain
(*=1) P (%)
Example 3.5. Show that P; (x) = x
Solution : Using the recurrence relation (3.10) and substituting | = 0, one gets
Py (x) = xPg (x) —0.P_1 (x)

XI P’} (X)

XIPy (X) = 1P -1 (X)

Substituting Pg (X) = 1, one gets
Pp(x) = x
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Example 3.6. Derive the expression of P, (x) using recurrence relation (3.10)
Solution: Using the recurrence relation (3.10) and substituting | = 1, one gets
2P5 (x) = 3x Py (x) =Py (X)
Substituting Pg (x) = 1, and P4 (X) = X one gets
2P, (x) = 3x°-

3 x2 1

Or P = 5X %
3.5. ORTHOGONALITY OF LEGENDRE’'S POLYNOMIALS
The Legendre’s polynomials satisfy the following orthogonality relation

1
J Pi00Pn (0x = S0 -(3.16)

Here 3y, is a kronecker delta function and is one if the two indices, i.e. | and m are same and is zero if
the two indices are not same, i.e. | #m

This relation can be proved as follows
P, (x) and P, (x) are the solutions of the Legendre’s equations given as

2
-0 522 TR (40P () =0 G1)
X
2
1-x) S zmz(x) 2 2P i )py () =0 .@19)
X

Multiplying equation (3.17) with P, (x) and equation (3.18) with P, (x) and subtracting, one can
achieve the following result

de(x)\

—Py (x)

2
4291 () oy (2P0 ()

d2p, () o ( dPp (x)
dx?

0
(1-x )LPm(X) J LPm(X)

+((1+)-m(M+21)P (X)Pyr(X)=0

( dp dPy (x))
L {pn (0@ 0032 L =+ 910+ D) P00 P 0

Integrating the above equation with respect to x between the limits -1 to 1, one can obtain

1
Pm(X)(l—XZ)%—Pm(X)(l—X )—— '( )f = (m(m+1)- |(|+1)j Py (X)Pm (X)dx
-1

-1

It results in

1
MM+ 1)-10+1) [P (x)Pp(x)dx = 0
-1
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(m=1)(m+1+1) [Py (X)Pm (x)dx = 0
-1

Thus there are two conclusions from the above relation, one is either (m —1) (m + | + 1) is zero or

1 1
J'_1P| (X)Py, (x)dx is zero, that leads to the conclusion that, I_1P| (x)Pp (x)dx=0, when | # m, the

second option m = — (I + 1) is not possible as m cannot be negative. When | = m, the relation can be

1
proved using Rodrigue’s formula (3.5) by considering the integral j_1P|2 (x) dx as

t td! (- (d' (@)t
2(x)dx = d
_jlp' (b= ||)2 “ x| VO

Integrating by parts the RHS, one can obtain

LOgl(x2—1) ) (d' (x2-1)! ) L [(a ey et oy
(2! u)z IL ! )" @ e dx! J_l
+1 I+1 (2 _ 1yl
_ jl (Lx'l (x2 -yt LD JXXIH D ox

The first term on the RHS of above equation is zero as

dl(x2-1)!

o = N(x+1) +12(x+1)-1 %(x—l)+l2(l—1)2

(+0) 72 L (x=1)2 b 12 (=D)L ()4 (x=1) 1120 f or x = 2.1

Thus the above integral could be rewritten as

1 +1d|(X2 _1)| dI(XZ _1)| i - (dl 1(X2 1)|\(d|+1(X2 1)|\dx
2'm2 7 ! dx! B (2'I')2 1L JL dx'+ J

Repeating the process | times, one can obtain

Llgh (x2—p" (d' (x2 ") ' |E o, (d2 (x2-!)
= -1 | ——————|d
Gl T e ) e | T ¥ e
(d2| (X2 _1)|\
Here LTJ can be solved using Libnitz formula as
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(421 (2 _1y1)
%J - (x+ 1)' d? (x 213 d (x+1)' wel 1(x —1) 421 (21— 1) (x+1)'
d2|—2 ( |)| d d2| -1
iy (x- “0)' 4 o a(x+1)' "l = (x- N
Al dzzll__ll(x+1)' A x4 (x- 1)' d’ (x+1)'
(d2! (x2 1)) |
or %J = (IZII? H1=(21)!
So that equation (3.19) becomes
Lt (x2 - (a' (x2 1)) 't o,
(2! |')2 “ ! M dx! Jd S (22 _jl(x B +(820)
+1
The integral j (x2 —1)" dx could be solved as
-1
1 1
[ x2-nldx = [ (x2-1)' (x-1)" dx=
] 21
I+11 1
(xs1) LD | [ D) (e o

s

1
—Ilj:[(xﬂ)"l(x—l)'*ldx

Repeating the procedure | times, one will achieve the following result

1 1
2 i I 1! 21
[o?-n'ac = (-1) (D) (1+2)(1+3)..21 _jl(x_l) ax

-1

)I (||)2 (X 1)2|+1|

= ( -1
(2 21+1 ‘_1

| (||)2 22|+l
N TFENY

(-1 -(3.21)



66 MATHEMATICAL PHYSICS-II (Sem. 1ll) Hons.

Substituting the value of integral in equation (3.20), the equation can be written as

}[d (x? 1)'\ (g (x2 1)|\ . (-1 (21)! - (12 22141 2
(2! Il)2 dx! dx! J (2'11)2 (21+1)! 21+1

Example 3.7. Show that

1
[ x'Pm (x)dx = oforl<m (322)
-1
1 1 (gm 7ym)
I ! _ 1 | (X 1)
Solution : Lx Pm (X)dx = om mllflx L J

( +1 )
(d m-1 (2 _1)m\ 1 (g m-1 (2 _1)m\
- 1 I _ -1
©ogm m!tX L dx™-1 J ! LX L dx™-1 dej

The first term on RHS of the above equation is zero due to the presence of (x> — 1)™in each term of
the derivative, hence

-1

1 1 _
Y Yl Gl P VY L U LAY
2Mmt 5 L dx™ J 2Mm! 7 L dx™- J

If the procedure is repeated | + 1 times, the term x! will vanish and hence the integral will become zero
for I <m.

Example 3.8. Show that

L 21+1 2
! ax - 2 0H7
;[1)( Prixx = (21+1)! ...(3.23)
1 ( N
Solution : Lx P (x)dx o J‘ L dxl J X

2'1|1 S v e

The first term on RHS of the above equation is zero due to the presence of (x2 — 1)" in each term of the
derivative, hence

I(dl—l(XZ _1)|\ +1_|'].; Xl—l(dl_l(xz _1)|\
4o

(gl (x2 - 1 (g"1(x2 )
LD L o e D)
2'n _jlx L dx! de 2'n _jlx L dx!t de
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Repeating the procedure | times, one can achieve the result

T (g2 _1y1) R
1 1 d(x°-1) D2
ﬂ_jle = de = _jl(x 1! dx

Using the results of equation (3.20), the above integral becomes

T (gl (x2 _1y) N2 ol+l
L[ da-D o (972
TR A e R e e

Example 3.9. Evaluate

1
[ xPr ()P (x)dx
-1

Solution : From equation (3.10), one may have

1
oD [+ )P+ 1P K= %P ()

So that the equation becomes

1 1

_jle. (X)Pn ()¢ = s _jl[(l+1)P|+1(X)+lP|_1(><)] Pm (x)dx

1 1
G [(|+1) J P11 GOPm () el [ Py (0P (X) dx]
21 -1

The integrals will become zero unless m = | + 1, thus

1
:[le| (X)Pm (X)dx = 210 {(“‘1) 2(|+1)+1+| 2(|_1)+1}

2 (141 g
2+ 2173 T 211

Example 3.10. Prove that the Legendre's Polynomials can be represented by the definite integral

PO =[x (1) cos 41'dg -(324)
0

Solution : To start with consider the defiinite integral

fd—q’ = LZ (ifa>b) (3.25)

0aJ_rbcosq> /az—b
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1-xtand b= t/(x*-1)

Let a =
so that a?-b? = (1-xt2-t2(x*-1)

1-2xt +x2%2 -2 x% + 2
1-2xt+¢
so that the integral given by equation (3.23) could be modified as
T n
0

a- xt)+t\/(x 1) cosd \1-2xt + £2

7 (1 - 2xt + 212

£ L—xt) + t«/(x 1) cosé

As (1 - 2xt + t2)~12 js the generating function of Legendre's polynomials hence using equation (3.8)
one gets

T d¢
TPt =
il E[l—t[xir\/(xz—l) cos 9]
= f[l—t{x + 02 =1) cos ¢y L do
0
sp et = [a-27'd¢ .(326)
0

Here z = t{x¥ \/(x2 —-1) cos ¢}

Eqn. (3.26) could be rewritten as

niPl(x)tI j(1+z+z +oen z)d¢
1=0

' (xF 021 cos @) do

Comparing the coefficients of t' on both sides, one gets

1
M
o —23

T

TP (X) = j{x F \/(x2 -1 cos ¢}' do

0
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1t 2
or RX = ?j{x+ (xz—l) cos ¢}' dé
0
This integral is also known as Laplace's first definite integral.

+1
Example 3.11. Evaluate _[ szlz(x) dx
-1
Solution : To start with consider the recurrence relation
(I+1) Py (0 = @ +1)xP (X)=1P1 (X)
or 21+ Dx P (x) (I1+D)Ps1(X)+1P_1 (¥

Squaring both sides and integrating both sides with respect to x between the limits -1 to + 1, one
gets

+1 +1 +1 +1
@+ [*RAX) dx = (1417 [ PA,(x) ax+12 [ PR () dx +20(1+1) [ Py,y(x) Py (x) dx
-1 -1 -1 -1

Using the orthogonality relation of Legendre's polynomials given by equation (3.16) one gets

+1
2 [ .,2p2 _ 2 2 2 2
@+ _jlx e e i T e T
= Ta+3 A4
*jl 202 0 4 2(1+1)2 212
P~ (x)dx =
or L * @+12 @ +3)  @+12@-1)

Example 3.12. Find the value of | if

+1
[Pix)dx =2
-1

Solution : From the result of example (3.23) one get

22I+l ( !)2

1
I
j X P (x) dx a0

1
which will be 2 iff 1 = 0 as

+.

22I+l(“)2 B 21(0!)2=

@+ - g 2
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Hence 0 is the value of | for

+1
[R&)dx = 2
-1

Example 13. Find the value of Py 1 (0).
Solution : Consider the generating function of Legendre's polynomials

M

2
Py()t™ = (1-2xt+ 212
1=0

substituting x = 0, one gets

Z Py 0) t2l = (1+ t2)—l/2

=
1/ 1 1/ 1 1
or ipm 0 = 1—%t2 . _E(_Z!E_lj 22+ _E(_E_j (_3_ j &) +
EESCTNEINMN

Comparing the coefficients of t2'*1 on both sides one gets
Py+1(0) =0

3.6. TRIGNOMETRIC REPRESENTATION OF LEGENDRE’S POLYNOMIALS

The Legendre’s polynomials can also be written in terms of trigonometric functions by substituting
X = cos 6, such that equation (3.5) becomes

P, (cos 0)

(d' (cos26-1)! [ g\") ( ')
1 dx d! sm 1
o do '\WJJ 2'|IL( =l (sme)J

_ 1 (1 d'sin?'e)
2'I!Lsin'9 do' ) -(3.27)

3.7. SECOND KIND OF LEGENDRE'S POLYNOMIALS Q(x)

The second solution to Legendre’s differential equation, given by the second part of the equation
(33)

I+ (1+2)(1+3)(1+4)...(1-2n) —1-2n-1
y = aoz -
n=0 2" n!(21+3)(21+5)...(21+2n+1)

is known as second kind of Legendre’s polynomials and are denoted by Q) (x). The relation between
P; (x) and Q; (x) is given as
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QW) = %P| (x)In ifi
with Qo) = %Inii—i as P (x) =1
and Q) = %Pl(x)ln ii =P (x)Qp(x)-1

3.8. ASSOCIATED LEGENDRE'S POLYNOMIALS
The solution to associated Legendre’s differential equation

dzy dy ( \
(1-x )dx2 2de+L 1_X2Jy 0

And are given as
PM(x) = (-D)™(1-x )m/z[dx P|(X)) m=>0 .(3.28)

That can be extended for negative values of m by finding the proportionality between P™ (x) and
P~™ (x) by substituting the value of P, (x) from equation (3.5), so that equation (3.28) can be rewritten as

(-1)™ (1-x2)™2 (" yl+m
2l (d l+m

P (x) = (x-1)' <x+1)'j (3.29)

Differentiating equation (3.29) using Libnitz formula one gets

m/2
(DT E-x ?) ((X+1)|+m d'"
2" dx '

PM (x) = ———(x- 1)! H(I4m) (x+1)' T (x AL

creme, A gyt A () 9 (k-
dx™ dx! dx™

LR o) (-0l (x- 1)'
X

(x+1)'}

+(I+m)

In the above expression, the terms varying between m to | are non zero, therefore the above term can
be rewritten as

(DM a-xH)™2 L (em)t - rm
T r:zm rm_ry (=t YT )'( b

Replacing r' = r —m, the above equation could be rewritten as

P™(x) =

(_1)m(1_x2)m/2 I-m (|+m)| ||
A em—r (—r )]

P () = () e

()'
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Multiplying and dividing the above equation with (1 — x%)~™ (I -m)! And rearranging the terms, one
gets

o (= 0 (21,]?2)_% ()" (o2 1)
sz P T G
or P (x) = (_1)m(21|_|)!(2)_2 (-1)m (Hm, Z RG ),(| m)| T 'r 5 (x+1)!-""
GEI i
or PM(x) = (—1)m(21|—l>!<2)_%( By (I+$;I Z a-mc, d “”y%(x‘”'

| 2 I-m
Or le(x) :( 1)m E +$;I(_ )m (1 )2( I)I Z (- m)c d ( 2_1)|

I
Or P () = (-D" kP () (330)

3.8.1. Recurrence relations of Associated Legendre’s Polynomials

Recurrence relations of associated Legendre’s polynomials can be obtained directly from the recurrence
relations of Legendre’s polynomials. The equation has its role in solving spherical harmonics utilized to
quantum mechanics to solve the 6 and ¢ part of spherically symmetric problems.

The first recurrence relation can be obtained by differentiating equation (3.10) m times with respect to
X one gets

m m
(1+ 1)M = (21+1) d™ (xP (x)) 0 d"P_1(x)
dx™ de de
m m m
or (I+ 1)M = 20y x 3P ) o) gy 9TPLC) | AP (%)
dX de de de
m
Multiplying the above equation by the factor of (- 1)™ (1_X2) 2 one gets
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(1+1) (—1)m(1—X2)7M =@+ x D™ (1—x2)%m +@+D)mEnm
de de
(1X)7dm|(x) —I(=p)m (1X)2dP|—_;(><)
dx™ dx

Using the definition of associated Legendre’s polynomials, the above equation could be rewritten as

1
(I+1)P (X) = (21+1)xP[™ (x)+(21+1)m(1- x 2y2 P (x)=1P™, (x)

(331

The other recurrence relation can be obtained by differentiating equation (3.13) m-1 times with respect
m

to x and multiplying the result by a factor of (-1)™ (1-x? )7

(-DM(1-x )m/zj (xP," (x)) =(-1)™ (1-x )m/2 d"™Py (x)
xm

dy™

— (=DM (1-x )m/Zj P, (x)

0 dm-lp. (x)

I(-1)™ (1-x2) 2 7 4" ()

d"MPy (x)
X(-1)" (1x)2—' 1

dx™ dx™

+m(=1)™ (1-x2) 2

d"Py_g (x)

—(-)™ (1-x?) H
dx™
Using the definition of associated Legendre’s polynomials, the above equation could be rewritten as

1 1
~(1=x®) 1P (x) = P (x)=(m=1)(1-x7) 2 P" (x)+P"y (X)

1
or [P (x)=(1-m+1)(1-x2)2 P" (x)= xP" (x)] (332

1
The third recurrence relation can be obtained by eliminating (1-x2) 2 le (x) from equation (3.28)

and (3.32)
(I-m+1)P1, (x)—(21+1) xP" (x)+(1+m)P™; (x) (3.33)
3.8.2. Orthogonality of Associated Legendre’s Polynomials

The orthonormality of le (x) and PI”? (x) for I' = | can be obtained using the Rodrigue’s formula for

associated Legendre’s differential equation as
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(I+m)

jpm(x)Pm(x)dx = (- 1)"‘

j ™ (x)PT (x)dx ..(3.39)

Here the result of equation (3.30) has been utilized. Equation (3.29) could be utilized in the above
equation as

(- 1)3m(|+m)| I (1-x ) mlz;

Y\ ( gl+m A
x2 _1y! _y2ym/2 2 !
TR I1(1-m)! * 1)M(1 x4 dx!+m =D de

-m

(-1)3™ (1+m)! 1(dl—m ) I\ [ gl+m , |'\
D' E=——%-1"|d
2 AL O D (g 08 DY

Integrating the above equation by parts, one gets

1
[PM ()P (x)dx =
-1

(1™ (I+m) |[gl'+m-1

1
J P GO () = 2 2l 1 @myt| Uggremt _1)J(

( I-m+1 \\ ,\
g @[ 4 —D'yﬁ]

The first term on the right hand side will be zero as all the differential terms contain (x> — 1) that will
vanish for x = + 1, so that the above equation could be rewritten as

1
[P ()P (x)dx =

(-)3™1 (1+m)! }(dl—mﬂ 2 i) [am
! 22y (H=m)!

A
2 _ 1y
_1del—m+1 J Ld I"+m-1 (X 1) JdX]

Repeating the same process m times, one gets

1 4m
M rpm ey - (D (Em)t| T gl IR
:[1P| (x)PT (x)dx = i 1 (m)! [:flk (x2 —D)L -1) J

Using the Rodrigue’s definition of P, (x), the above equation could be rewritten as

1
JRM0ORM (0dx = E:*m) [ [RR.( dx]

Using the results of equation (3.16), one is able to rewrite the above equation as

_(+m)t 2
To(l-m)t 2141 MM

1
[ A 0P (x)dx (3.35)
-1

That is the required orthogonality relation.
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4. HERMITE'S DIFFERENTIAL EQUATION AND IT'S SOLUTION

The Hermite’s differential equation is given as

2
d y—2xd—y

dx2 dx

The equation is utilized in quantum mechanics to solve the problem of simple harmonic oscillator and
to find its eigen values and eigen functions. It is also used in molecular spectroscopy to find the vibrational
spectrum of the molecules, thus keeping in view the importance of the equation, it is necessary to solve
this differential equation. The equation (4.1) is already in its general form with P (x) = — 2x and Q(x) = 2v
finite for all real numbers, hence no singular point exists for the differential equation (4.1). The general
series solution to the equation is

+2vy =0 ...(4.1)

y = 2 ax

n=0
o0
such that y' = > nax"?
n=0
o0
And y" = Y n(n-Da x"?
n=0

Substituting the values of y, y', y” in equation (4.1) one can obtain the relation

oo}

o0 o0
> n(n ~Da x"? -2x) nanx”‘1+2vz ax" =0
n=0 n=0 n=0

(o]

0 0
or > n(n-Da x"2-2> na x"+2v) ax" =
n=0 n=0 n=0

oo}

> n(n ~Da x"% - 2> (n-v)a,x"=0
n=0 n=0
Equating the coefficients of x" on both sides one can obtain
(M+2)(n+1l)a+2-2(n-v)a, =0
2(v—n)
Such that Ao = — —(n+2)(n+1) n

Substitutingn =0, 1, 2, 3, 4 ...., one can obtain the values of a;s in terms of ag and a; as

27751 % 8=
2 2
8= _2(\;'.—32) 8= (_1)2 2 V(4V!_2)ao a = _2(\;;3) ay= (_1)2 2 (v—51!)(v—3)a1,



76 MATHEMATICAL PHYSICS-II (Sem. 1ll) Hons.

6° 65

3 _ Bulv 1\ (v — 2 (v —
_2(v—4)a4=(_1)32 v(v—62!)(v—4)a0 a7=_2(\;.65)%:(_1)32 V(v 1)(;/! 3)(v 5)al

_(-2"v(v-2)(v-4)..(v-2n-2) % _ (2" (v-)(v-3)(v-5)..(v-2n+1)

a =
%n 2n! 2n+1 (2n+1)!

Thus the solution to equation (4.1) is

y = & i (=2)"v(v—-2)(v—4)..(v-2n-2) 2n
n=0

2n!

+a, i (-2)"(v=1)(v=3)(v=5)..(v-2n+1) (201
n=0

(2n+1)!

Additional Information (Taylor Series)

Taylor’s series have been designated so honouring Brook Taylor who invented these series in
1715 and is a series expansion of a function about a regular point and is given as

2 n
f() = f(a)+(x—a)f'(a)+%f”(a)+ ...+%f”(a)

Where a is a regular point and f " (a) is the nth derivative of f (x) at x = a

4.1. GENERATING FUNCTIONS OF HERMITE POLYNOMIAL

The solutions to Hermite’s Differential equation are known as Hermite Polynomials and the generating
function of Hermite’s polynomials is

2 H,(x)t"
\
e2xt—t2 = v .(4.2)
v=0

oxt—t2

To verify it consider the Taylor series expansion of e aroundt=10

2 2 2 A2 2 3 3 2
e2xt—t® g0 oxit? 170" oxt® U 0" ox-t®
ot 2! 52 3l 5t3
2 20 2 2 X2t2 52 2 2
Or e2Xt-t= _ 1+ te* _e—(x —2xt+t )_‘_e _e—(x —2xt+t<)
ot 21 at?
2
X“:3 A3 2 2
R o
31 53
Or T T (e L I RNLNCNPS G0 i
0 2! a2 3

.(43)
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0 0
i —F(x-t) = - —F(x-t
Since pn (x—1) Y (x—1)

Equation (4.3) can be rewritten as

2 2
X742 A2 X743 A3
ax—t? | g o2 0 en? BT 0T ep? €T O (xt)?

X t)==¢€
g0 ox 21 ox? 3 o

At t =0, the above equation becomes

2
o0 eX aV B 2 o0 f (X)
9 = D (D e =Y
V;) vl oxY Vé) v!
Where
2 8V 2
f,x) = (-1)'e 676 X .(4.4)

2 - .
To ensure if f, (x) is the solution to eqn (4.1) consider F=e™* and its differentiation with respect to x,
such that

F 2
?j—x = -2xe ¥ =-2xF -(4.5)
Differentiate equation (4.5) v + 1 times using Libnitz formula, one will obtain
dV+2F dV+1F dVF
— = 2X————-2v—
dXV+2 dXV+1 dXV
dV+2F dV+1F dVF
Or — = -2X —-2v—
dXV+2 dXV+1 dXV
d? (d'F) d (dF) . d'F
5 = 2X——|——| -2v—— (4.
o dx? de" ) X dx( dx J v dxV (4.6)

From equation (4.4) one may obtain

d'F _ dve ¥’

2
et CUCR (S

Substituting the value in equation (4.6) one obtains

d2 \' —X2 d V —X2 \% —X2
— (=D7e ™ f,(x)) = =2x—((-1)"e f,(x))-2v(=1)"e " f,(x)
dx dx
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1V—OI2 g = ox()' L e 2v(-1)'e Xt
Or (_) dX2 (e V(X)) - X(_) &(e V(X))_ V(_) € V(X)
S d?f,(x) yedf,(x) 5, 2 )
or (D) Le dT_4xe — "+ 4x%e fv(x)J
- —2x(—1)"(e‘xzm—2xe_x2 fv(x)J —ZV(—l)Ve‘X2 f, (%)
dx

([ 2d%f df, ()
Or (—1)VLe‘X2#—2xe‘X2 #J = —2v(—1)Ve‘X2 f,(X) (4.7

2 .
Eliminating (-1)Ve™* from equation (4.7), one can get

d2f,(x) . df,(x)
x4 ovf =
o2 T A =0
Therefore, f,(x) = Hy, (X) or
2 9V .2
Hy (¥ = (-1)"e* 679 X ..(4.8)

This is the solution to equation (4.7) and is also known as Rodrigue’s formula for Hermite polynomials.
Example 4.1. Prove that H, (-x) = (<1)" H ().

Solution : Replace x with — x in the generating function of Hermite’s polynomials given in equation
(4.2), one gets

* H (-x)t
e—2xt—t2 = ZVT
v=0
* H, (-x)t
or 2X(0-(0? = D
v=0
2 H, () ()" 2 H, (=)t
RASAZA S AN
o \/;) vl B V;) vl

Comparing the coefficients of t¥ on both sides, one gets
H (=X = D)"HM
Example 4.2. Convert 2H, (X) + 3H4(X) — Hy(X) + 5H; (X) + 6Hg(X) into ordinary polynomial.
Solution : Here
Hi(X) = 16x*—48x% + 12
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Hs (X) = 8x3—12x

Hy(x) = 4x2-2
Hi(X) = 2x
Ho (X) =1

Substituting the values of Hermite’s polynomials in the given equation one can obtains
2 (16x* —48x%2 +12) + 3 (8x3 —12x) — (4x> —2) + 5.2x + 6.1
32x* + 24x3 — 100x% — 26x + 32

4.2. ORTHOGONALITY OF HERMITE'S POLYNOMIALS

The orthogonalityof Hermite’s polynomials is given as
L 2
[ e H,(0 Hu(dx = Jm2'vis,,

And can be deduced by utilizing the generating function

2xt—t2 p2Xs— s2 SRR t' s’
e Z Z Hy (O Hy, () ==
0 veo vlv
2
Multiplying both sides by e ™ and integrating between the limits — o to oo, one gets
© 2 VoV T 2 2 2
J‘e—X HV(X) HVV(X)dXt_S— - je—X ert—t e2XS—S dX
vl vl
L2 tV gV L2 2.2
J‘ e X H, (X) Hv’(X)dxm$ = j e X H2xX(t+8)—t7—s" g

— o0

Multiplying and dividing RHS of equation (4.9) with e the following result can be achieved

0 V 0 2
j e X H (X) H (X) dX I — e—ZSt j e—(X—t—S) dx = e—ZSt\/;
viv'

2
As Jm e X dx = /7, is called the integral of Gaussian.
—00

(oo}

[e H, (%) Hy, () dx S—I N
— o0 V
2,2 0 AV VLV
Here g2t = 1—23t+‘1rSt — = 2’ st
V=0 V'l

Thus equation (4.10) can be rewritten as

je h JOOH, (x)dx—— = fz ZV' -

—00

.(4.9)

(4.10)
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Comparing the coefficients of t s" on both sides, it could be concluded that
® 2 v H ’
-X _ 12 v if v = v
I e H, () H,(x)dx = {0 if v/ v

— o0
The orthogonality of Hermite’s polynomials can be used to expand any arbitrary function f (x) in
terms of Hermite’s polynomials as

oo}

f() = >, a,H, (%) (4.12)

v=0

X

2
The coefficient a, can be found by multiplying equation (4.11) with e™* H,, (x) and integrating both

sides between the limits — oo to oo,

j e‘xzf(x) H, () dx = iav Te‘XZHV(x) H, (x)dx
v=0 -

— 0

or T e_x2 f (x) H,, (x)dx

— o0

> a,2'v! Jr 8y
v=0

OJ? e‘X2 f(x) H, (x)dx

— o0

a, 2"v'! Jr

or < ()H, () dX = a, (412)

L
- e
PAR VAN

Example 4.3. Express f (x) = €2 in terms of Hermite polynomials and use the result to deduce the
value of integral

® 2
j e X XY (x) dx

—00

Solution : Consider generating function equation (4.2) of Hermite’s polynomials and replace t with b

* H/(x)b"
2 _ vy’
Q20-b2 = X v
n=0
b2 < HY(x) bY
or eZXb - e Z—
r v!

But f (x) = e2° hence

2 2 H! (X)) bY
ebz v()

v=0

f (X) .(4.13)

v!
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Comparing the results obtained in equation (4.13) with equation (4.11), one can obtain

bY 2
a, = 2 b
v!

Comparing the values of a, from equation (4.12) to the above results one can get

ﬂebz - 1 Oj‘) e—x2+2be (x) dx
v! PAINL iR Y
L 2 2
or [ e H, (gdx = 2'0%" Vn

—00

4.3. RECURRENCE RELATIONS OF HERMITE'S POLYNOMIALS
The recurrence relations of Hermite’s polynomials to be established are
(@) 2vH1 (x) = HY(X)

Differentiating equation (4.2) with respect to x, one can obtain

* H!(x)tY
2 \
ot o210 = D :
v=0 V!
o0 H (X)tV+1 0
or 2y —o— = Y H
v=0 Vi v=0

\
Comparing the coefficients of t—l on both sides one will get
vl

2vH,_1 (X Hy (X) ..(4.14)
(b) 2XH, () = 2vH1(X) + Hyeg (X)

Differentiating equation (4.2) with respect to t, one can obtain

© H ()t
2 \
2(x—t)e2tt" = ZVT
v=0 )
® H (x)tY © H (x)t'?1
2(x—t) v() = Z—"( )
— M o (-1
® H (x)tY © H (x)tV*L © H (x)tV?
ox V(|) 2y V()| -y v(X¥) |
v=0 Vi v=0 v: v=0 (V _1) :
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\
Comparing the coefficients of t—l on both sides one will get
vl

2xH, () —2vH1 () = Hye1 ()
Rearranging the terms, one will achieve the recurrence relation
2xH, (0 = 2vH,; (X) + Hys (%)
© Hy (%) = 2xHy (X) = Hy:a (X)

.(4.15)

Substituting the value of 2vH,_; (x) from recurrence relation (4.14) in to the recurrence relation (4.15),

one gets
2xH, () = H'y () + Hy1 (X)
Rearranging the terms, one will achieve the recurrence relation
Hy (%) = 2xHy(X) - Hys (X)

0
Example 4.4. Show that _[ xMe=x’ H, (x)dx=0 foranyinteger, 0<Sm<n-1.

—0

Solution : From equation (4.11) one knows that

f(x) = 2 aHv(X)
v=0

Here f (x) = x™, Hence the above eqn. can be written as

0
XM = Z avHv (X)
v=0

.(4.16)

Multiply the above egn. with e—X2 H, (x) and integrating between the limits — o to oo, one gets

o0

— o0

Using the orthogonality of Hermite's polynomial, the above equation can be reduced to

> a2 viWr 8y =0
v=0

j e~ X’ xMH p, (x)dx

for n = v the egn. becomes

j e~ X’ xMH p, (x)dx

— 0

an 2" ni/n

[e*xmH, (0dx = Y ay [ e Hy (0H, (x) dx
v=_0 — 0

5 mlying between0<m<n-1
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Thus

ap = szmHn(x)dx

1 0
_— e_
2" nlyn _J;O
Example 4.5. Prove that Hy(x) =1

Solution : Considering the generating function of Hermite's polynomial, from egn. (4.2) and subtituting
v =0, one can find

gz = Hot
€ 0!
p—2xt—t2 = Hy(x) 0

Expanding the LHS of above egn., one gets
Ho) 0 = 1-2xt—t2+........
Comparing the powers of t° on both sides one gets
Hox) =1
Example 4.6. Prove that Hy(x) = 2x
Solution : From the recurrence relation (4.14) substituting v = 1, one gets
21Hy (X) = H{'(x)

dH
or Lo LG R
dx

Integrating both sides w.r.t. X, one gets
dHjq (x
J' 1(X) dx
dx
or Hi(X) = 2x
Example 4.7. Prove that H, (x) = 4x° - 2.

= 2Idx

Solution : From the recurrence relation (4.16) substituting v = 1, one gets
Hi(x) = 2xH; () -H2 (X)

Substituting Hy(x) = 2x and rearranging the terms, above equation could be rewritten as

Hy(}) = (2¥).(2X) — %(2 X)
or Hy(X) = 4x>-2

5. LAGUERRE DIFFERENTIAL EQUATION AND ITS SOLUTION

The differential equation

d?y dy
X—=+(1-x)—=+ky =
! (1-x) o =0 (5.1)
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is called Laguerre’s differential equation of order k and its solutions are called Laguerre’s functions. The
differential equation appears in the radial part solution of one electron atoms, like hydrogen. The equation
can be rewritten as

2
ey a0y k

2wty 70 (52

_ k
Such that P(x):l—X and Q(X)=; becomes infinite at x = 0 making it a singular point. The next step
X

is to check the nature of singularity using the relations

1-x
lim (x—-0)— = Eini
X_)0( ) < 1 = Finite

and

. k
lim (x-0)>= lim kx = 0 = Finite
x—0 X x—0

Hence x = 0 is a regular singular point and thus the equation can be solved using Frobenius method.
The solution to equation (5.1) is given as

o0
_ n+o
y = Zanx
n=0

o0
So that y = Y a (nto)x™et
n=0

o0
and y" = Zan(n+a)(n+a—1)x"+°“2
n=0

Substituting the values of y, y’, y" in equation (5.1), one can obtain

o0 0 o
XY a,(n+a)(n+a-1) X2 4 (1-x) > a,(n+a) Xl g > a x4 =0
n=0 n=0 n=0
o0 0 © w
or Y a,(n+o) M+a-Dx" 1+ a (n+a) xS a (nra) xMA+k Y a xM =0
n=0 n=0 n=0 s

or 3. an((n+Oc)(n+0c—1)+(n+oc))xn+o‘_1 - a (n+a—k)x™* =0
n=0 n=0

or > a (n+a)® x"* =N a (n+a—k)x"* =0
n=0 n=0
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Equating the coefficients of lowest power of x, i.e. xX*~1 on both sides one can obtain
ao? =0
ag # 0, hence o = 0, which is an indicial equation, which provides the value of o as
oa =0
Comparing the coefficients of x**", one can obtain

au(N+1+a)f-a,(n+a-k =0

or _ (n+a- k) c3
1 = (n+1+a)? ~(53)

Substituting a = 0, equation (5.3) becomes

(n —k)
G+l T g2 T

Substitutingn =0, 1, 2, 3, 4 ...., one can obtain the values of a}s in terms of ag as

a; = —kao
a - k) 8= (- 1)2k(k 1)ao
(2-k) k) k(k-1)(k-2)
w =g AN T
ni1 k(k—2) (k= 2)...(k —n) ni k(k =1 (k= 2)...(k—n)
ey - bl (n)?2
or T (_1)n+1k(k—1)(k—2)...(k—n+]_)(k_n)!
n+1 (n!)z(k_n)!
OI' an+1 - (_1)n+]_ kl

2kt O

So that the generalized solution of Laguerre’s equation could be written as

( 1)n+1k| n
= nzo(n') 24—y
By considering ag = -k !
k
The equation becomes y = %% ..(5.4)

Equation (5.4) is the expression for Laguerre’s functions and are represented by Ly (X)
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5.1. GENERATING FUNCTIONS OF LAGUERRE FUNCTIONS
The generating function of Laguerre Functions is

gxt) = e IFt=3» *~—— ..(5.5)
1-t oo K!
[
To verify it consider the expansion of Ee s
1o 1 xt Xt Xt )" x"t") X"
— e -t_ — 1-—
1-t

- - (-1)"x
| It 2002 3an® n!(l—t)) Z

b on' (1 t)n+1
that can be expanded further by expanding the term (1 —t)™ ! as

nzzg(—l)n!)(t 1-t)™" n-1 Z( 1). Xt

n=0

(1+(n+1) t+—(n+1)2(ln+2) 24t (n-+1) (n+|2|) (n+|)t| +)

& 1)“x”t“+' (n+1) (N+2) ... (n+1)n!
=nZ:: § nil!
1 ntn L )" ntn+l N
or Z( )_ -yt - nZé IZ())( )X (nn;!) .(56)

Substituting n + | = k, equation (5.6) becomes

o (1)"x"t" 1) Sl & & (D) 2 & (DMK (k2
T -0 2 2 nl(k n)' T2 LT ) ~(.7)

Comparing the results of equation (5.7) with equation (5.4), one can obtain
1 0 _ oyt
et = ) L)

5.2. RODRIGUE’'S FORMULA FOR LAGUERRE FUNCTIONS

The Rodrigue’s formula or the differential representation for Laguerre functions is given as

L = (-Dke* (xk ) .(58)

To prove it consider a function gy (x) = x€ e and differentiate it k times with respect to x using Libnitz
formula, such that
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d 0 dk r k dl’ —X o0 kl
(:xe . Zk X dx" Z_: "y Kk-Dk=2) .. k=T + )X (D) e

rd(xk e ™) i k! k(k-1) (k=2) ... (kK=r+1) (k—r)!

k—r r,—X
¢ [ ok=ntr! (k—r)! X (-De

d Ode™) 50 DT kergox
T T S (k-2

Substituting k — r = n, and multiplying equation (5.9) with e* the equation becomes

.(5.9)

xdi e ey Y (k)2
o o2 (k- n)'

dk(xke
or (—1)kex¥
dx

L )

5.3. ORTHOGONALITY OF LAGUERRE FUNCTIONS

The orthogonality of Laguerre Functions is given as

e L (X)L (x)dx = (k)2 §y

O 8

And can be deduced by putting equation (5.1) in Sturm Liouville form as

|
o

i(e_x d Lk (X)\
i .(5.10)

™ ) +keT*L, (%)

Similarly

d ( _de|(X)\
— et "

le™ L
dx dx )+e 1)

1
o

(5.11)

Multiplying equation (5.10) with L, (x) and equation (5.11) with Ly (x), subtracting and integrating
between the limits 0 to o, one can get

< d( _xdL () d(_XdL()\ T X
I{Ll(x)&L gx ) - L 0 T J}dx+(k—l)£e L, (X) L, (x)dx = 0

0

T d (L, (x) [ dL 00N T
or '([&{Ll(x)ke - —Lk(x)Le TJ}dx+(k—l)£e L, (X)L, (x)dx =0
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k( )} L, (X )Le Ly (x )} +(k=1) Je*L 0L () dx=0
0

(
L, (%) Le
The first term in the square brackets becomes zero at both the limits, concluding

k-1 [e*L LM dx =g
0

Thus there are two conclusions from the above relation, one is
Either k=) =0

or [e*L L dx =0 -(512)
0

that leads to the conclusion that, jgoe‘XLk(x)Ll (x)dx =0, when | # k, When | = m, the relation can be

evaluated from the generating function (5.5), after multiply with e as follows :

o Lk
t 1 xtn-t
kZ_‘Z)—!l_k(x) = ¢
(tk\z o 0 1 w Lt
— [e*2 (dx = 1 tdx = e Itdx
(k) { ‘ (- t) I 1-1)? (j)
X1+t *
2k © 4
t Xy 2 1 e 1-t 1
Or e "Ly (x)dx = = -1
(kl)2'£ k (1-1)? (1+tj 1-1) 1+t 0-=1)
1-t/]y
2k o0
_ 1 2
e X3 (dx = =t
[ / -t
Comparing the coefficients on both sides one can achieve the result
i —Xy 2 _ 2
j e XL (x)dx = (ki) .(5.13)
0

Equation (5.12) and (5.13) can be written in the combined form as

[e*L oL (dx = (k)23 ..(5.14)
0
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5.4. RECURRENCE RELATIONS OF LAGUERRE FUNCTIONS

@) KLcg (®) = Kbp_1(x)—Ly(x) ...(5.15)

Differentiating equation (5.5) with respect to x, one gets

xt © | k
_ t E_E _ Z Lk (X)t
a-1)° ko K
t i L, (0t i Ly (x)tK
Or - =
-t & k! = k!
o 2 L, ()< ) i Ly (x)tK 2 L (x)t<*t
o k! o k! i K
£
Comparing the coefficients of a on both sides, one gets
kL1 () = L% () —kL'k1 (X)
Or kLiea (0 = KL'g () — L'k (%)
(b) Lysp () +(x—2k=1) L () + k2 Ly () =0 .(5.16)
Differentiating equation (5.5) with respect to t, one gets
0 k-1
(_ x oxt 1 \e—gzzl-k(x)tl
( -t -1 (1—t)2J koo (k=D
o (—x+1-t) _ﬁ _ iLk(x) k-1
L(l t) J oo (k=1)!
(x+1-t) & L 00t © L ()t
k
or e P2 M v
-9 /o K koo (k-D!
L (x)t L, (0t<?
(—x+1-1) - (1-1)?
Or Z kz;) (k—1)!
L (x)t L 0tk
or (—x+1- t)z = (- 2t+t)z (D)1

Lt 2Lt 2 L0t a2 L0t &L ettt
k! T k-0 2 (k-1 +2 (k—1)!

k=0 k=0 k=0

Or (-x+1) Z
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k
Comparing the coefficients of % on both sides, one gets

Q=X)L + k-1 (9 = Liwa () = 2KL (X) + k (K + 1) Liq (%)
Rearranging the terms one gets
Lice 1 () + (x=2k=1) L () + K Lea () =0

6. BESSEL'S DIFFERENTIAL EQUATION AND IT'S SOLUTION
The differential equation

q2
ay, xd—y+ (x
dx?  dx

is called Bessel’s differential equation of order m and its solutions are called Bessel’s functions. The
equation has many applications in solving the physical problems and hence is of great importance. It
finds its applications in solution of Laplace equation and Helmholtz equation of a quantum free particle.
The equation can be rewritten as

d?y 1dy (x*-m?)
dx?  x dx X2

2

x? —mz)y =0 ..(6.1)

2 2
1 (x*=m*%) o L . .
Such that P(x)=; and Q(X)=—2 becomes infinite at x = 0 making it a singular point. The
X

next step is to check the nature of singularity using the relations

lim (x—Xq)P(x)
X=>Xg

and lim (x=%,)* Q(x)

for Bessel’s equation. Thus

. 1
lim (x-=0)— = 1= Finite
x—0 X
2 2
. XS —m
and lim (x—O)Z% = lim (x2 —mz) = -m? = Finite
x—0 X x—0

Hence x = 0 is a regular singular point and thus the equation can be solved using Frobenius method.
The solution to equation (6.1) is given as

o0
y - Z anxn+0L
n=0
o0
So that y = D a, (n+o) X"t

n=0
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o0
and y' = Y a (n+a)(n+a-1) x"e2
n=0

Substituting the values of y, y’, y" in equation (6.1), one can obtain

0 0 0
x> Y a (n+a)(n+a-1) x"* 21 a (n+a) x4 (x2-m?) D ax" =0
n=0 n=0 n=0

o0 o0 o0 o0
or 2 & (n+a)(n+a-1) x™*+ > a (n+o) x"* +3 a xNe+2 _m? D a, xMe
n=0 n=0

n =0
n=0 n=0
o0 o0
or 2 a((n+a) (n+o-1)+ (N+o)—m?) X" + > a X"t t2 =0
n=0 n=0
o0 o0
or 2 a((n+a) (n+o-1)+ (N+o)—m?) X" + > a X"t t2 =0
n=0 n=0
o0 o0
Or Z an ((n+a)2 _m2) Xn+0t+ Z anxn+(x+2 — 0
n=0 n=0
Equating the coefficients of lowest power of x, i.e. x* on both sides one can obtain
ag(@®-m?) =0
As ay = 0, hence a? —m? = 0, which is an indicial equation, which provides the value of o as
o = tm
Comparing the coefficients of x**1, one can obtain
a (a+1)?-m) =0
As o = £ m, hence a; should be equal to zero
Equating the coefficients of x" * ** 2, it could be retrieved as
sz (N+2+0f-m)+a, =0
or n
a - n
2 (n+2+0c)2 —m?
Substituting n =0, 1, 2, 3, 4 ..., one can obtain the values of a',s in terms of ag and a; as
a=— L+ a3 = — 3 =0
? (2+0t)2—m2a01 (B+a)?-m? ’
1 (-)*a ¢ 1 .
a, =— a, = =5 4=
YT lra)?-m? 2 ((dra)2-m2)(2+a)-m?) G+a)?-m>
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1 (-1)%a, 1 ~

Groy M 4 (Era) )@ ra) M) (@l md) | (raP-m?

ag =
And the generalized term could be written as

(-D)"a,
(2n+0)2 =m?)..(6+a)? —m?) (4+0)? —m?) ((2+a)? —m?)

Substituting the value of o = m, the term could be rewritten as

an =

- (-1)"a,

27 (2n+m)? —m2)..((6+m)2 —m2) (4+m)2 —m2) ((2+m)2 —m?)
Or ayy = (_1)na0

27 2n..6.4.2.(2+2m) (4+2m) (6+2m) ... (2n+2m)
or oy = (-1"q,

Mn..3.2.1. (1+m) (2+m) 3+m) ... (n+m)
Multiplying and dividing the expression of a,, obtained above with m!, the term could be rewritten as

(-1)"m!
n = on
an 22"n1 (n+m)!

Substituting the value of o = — m, the second coefficient could be obtained as

(=1)"(-m)!

an = 5 ———— 4
an 22"n1(n—m)! %

So that the generalized solution of Bessel’s equation could be written as

aoz (-1)"m! 2n+m,i(1)(m)'

y = 022" n1(n+m)! £22"n1(n—m)!
m 2n+m © - 2n—m
D"2Mm!( x , "2 (-m)!
Or y = Z n!(n+m)! a2, ni(n-m)! \2
n=0 n=0
By considerin _ 1 and S the expression for y can be expressed as follows :
Y 9 %= 5m oy A f0 T Ty P y P :
© n 2n+m © 2n—-m
(-1) (X) GO [X)
y= Z_: n!(n+m)! 2. " Z nl(n m)! ~(63)

Butif | m| > 1, (-m + 1) is negative, the factorial for negative numbers are not defined. This dilemma
however can be circumvented by working with the definition of gamma function for non integers, nonetheless
the difficulty still pursues, if m is a negative integer.
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6.1. BESSEL'S FUNCTION

The two solutions given in equation (4.3) of the Bessel’s differential equation are known as Bessel’s
Function. Thus the first term

yi = Jn(X)= i:j & [szm .(6.4)

is called the Bessel’s function for positive m values and the second term of the solution of Bessel’s
Equation

© n 2n-m
_ 1) (X)
=J _(X)= Z — = ..(65

y2 -m(¥) =on!(n—m)!\2 (63)
are the Bessel’s function for negative m values.

6.2. LINEAR DEPENDENCY OF THE TWO SOLUTIONS OF BESSEL'S EQUATION

When m =0, J, (X) = Jp (X) and also J_,, (X) = Jg (X), the two solutions y; and y, became same, and
hence are not linearly dependent. If m is an integer again they are not linearly independent. To prove it
consider

L= S @zn_m

n—ont(n—m)!

Let n’ = n—m, so that the above equation becomes

In(®) = iﬂ(§j2n’+m

no(n’+m)!n"

Im () = ED)"In () -.(6.6)

Thus the two solutions of Bessel’s differential equation are linearly dependent. If m is not an integer

J_m (X) # Iy (X) and hence are linearly independent. The proof of the same will be discussed after defining
Wronskian.

6.3. WRONSKIAN AND THE SECOND SOLUTION

Frobenius method yields only one solution. It fails to give a second, linearly independent solution. In
that case, the second solution can be obtained by some other method. The other method of getting
second solution is using the Wronskian. Wronskian of two linearly independent solutions of a differential
equation is given as

Y1
Y1

Y2 , ,
Wy y) = yé‘ = Yi¥o — Yo¥q

Here primes denotes differentiation with respect to x. The first derivative of wronskian with respect to
X is then given as

dW(x)
Tk o Y'2=Y2 Y"1 (6.7)
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Since y; and y, are the solutions to equation (2.5), thus

y'1 = -PXY1-QMX)W -(6.8)
And

Y2 = -PXY2-Q() Y2 -(6.9)
Substituting equation (6.8) and (6.9) in eqution (6.7) one gets

d W(x) , ,
Tax | S NP XY2-Q(M)y2) -y ((P () y1-Q () 1)
d W(x) , ,
Or x| - "PR01y2-Y2y)
dW(x)
Or i = -PX)W(X)
Using the method of variable separation and integrating the two sides, one gets
INW(x) = - JP(xadx
Oor W(X) = W (a)elPe ..(6.10)

Equation (6.10) can now be used to get the second solution y, if y; is known by the following method.

(v v (v.)
212 M 2 d 1Y,
WX = =YoVi=Y1i| T 3| =1 2| o
) =Vy1Y2-Y2 Y1 1Ly1 ylzJ 1 dx(le
Thus equation (6.10) can be rewritten as
2 d(y,)
yr —| == = - P (x) dx
1 dXLyl W (a) e
dly,) o 1P(0dx
Or dxtyl) = W(@Q)—5— -(6.11)
Y1
Integrating equation (6.11) w.r.t. x one gets
Yy e—IP(x)dx
— = |W(@) ————dx
ARSI
e—IP(x)dx
or Yo = yljw(a)—y2 dx (6.12)
1

That is the second solution to a general differential equation, whose second solution could not be
obtained using Frobenius method.
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Example 6.1. Find the second solution of the differential equation

2
de_y+ xﬂ+ X’y =0

dx?>  dx

And the first solution is given as Jy (X)
Solution : The given equation can be rewritten as

d2y 1ldy
——+
dx2+xdx y 0
1 _ _ _ 1
Thus P(x) == sothat e IPX)dx _g-Jaxix _ g Inx=;, and y, is given as
1 1
y2 = Jo(¥)| - ..(6.13)
i (%)
© 2n 2 4 6 3
<" (xj (%2 x* x
= R A AT AT
Here Yo ) ,E)(n!)2 2) "6 200

( Vo1l
Yo = Ll—%+%—ﬁ+ ...... ) j;(l—%+a—m+ ..... J dx

o
-
<
N
1
TN
=
|
|
+
2|
N
|
N
w
o
=~
+
~—
—
X |
TN
(=Y
le
+

( x2 x4 x8 V([ X2 5x4 )
or yzzkl—— ———+....] | In —_—t — +.....
4 64 2304 4 128
x2 x4 x8 ) X2 ( x2 x4 x8

(
yo=1In XLl—T+a—m+ ...... J +TL1_T+5_M+ ..... ) + e

6.4.Jy, (X) AND J_,, (X) ARE LINEARLY INDEPENDENT FOR m, NOT AN
INTEGER

If the wronskian of J, (X) and J_n, (X) is non zero for m, a non integer, the Bessel’s functions will be
proved to be linearly independent, hence consider
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W9 = 4 T (%) n(¥) = I () " I (9]
- dx Om 0 Im () = Jm (%) Im(¥)) = I (x) I (}) = I (%) I (%)

Since Jy, (X) and J_, () , both are the solutions of equation (6.1), thus

d2,(0 1d(0 [ m?)
Tad 0 x & )™
d2_, (0  1d (0 [, m?)

And dT BE— —L1—7) J_n(¥)

Substituting equations (6.15) and (6.16) in equation (6.14), one gets

.(6.14)

.(6.15)

.(6.16)

dW(x) (1dd_ 00 (. m?) )
& = Jm(X)L_;T_Ll_x_ZJ J_m(x)J —J_(x)
(1di 0 (0 m2). )
e ()0
dW) [ I 4300 350 d3;09)
o dx - X dx X dx
or d W(x) _ ~ W(x)
dx X
Or X%+W(x) =0
or d (xW(x)) _ 0
dx
Or XW (X) = constant
constant
Or W(x) = < ..(6.17)

Thus W (x) = 0, proving that for m, a non integer, the two solutions to Bessel’s equation are linearly

independent.

To evaluate the constant consider the wronskian when n — 0 in the expression of Jy, (x) and J_y, (X)

such that

neo = o3
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Lo ®) 23%5;(§J_m
Tm®) = i1)! (9 "

o) = semia)

The Wronskian becomes

wo = o3 a3 o)
i 1 1)
X\ miCmant - Cm)im-11)

Or W (x)

1 1 B 1 )
xLF(m+1)1"(—m) F(m)l"(—m+1))

Or W (x)

Using the property of I" (m + 1) = mI" (m), the above relation could be rewritten as

1 1 3

< | N

1
W = S armrem T mrm rem) -

Using the property of gamma function for non integers
FMIEM = = n m
The expression for W (x) can be rewritten as

W) = 2msinmtm 2 sin wm
X mn X =

Comparing equation (6.17) and (6.18), one gets

2sin Tm

T
6.5. GENERATING FUNCTION OF BESSEL’'S FUNCTION

The generating function of Bessel’s equation is given as

X 1

| t_ p

G

To prove it separate the exponential of the generating function into two parts

Constant = —

X X
g(xt) = e2.e?

mI"(m) T'(-m)

.(6.18)

.(6.19)
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Expand the exponential terms using Taylor series expansion

)" x\"
gxt) = i (zntlj n'i::o (—1)n'%

N=—o0

Considering n = n’ + m, equation (6.20) becomes

i;: i (g)znurm

g (xt)

Or gt

i 3. oot"
m=0

Comparing the results of equation (6.19) and (6.20) one gets

A %

m=-ow

tm

(n"+m)In"!

6.6. RECURRENCE RELATIONS OF BESSEL'S FUNCTION

The Bessel’s function satisfy following recurrence relations

@ It 00+ Ina 00 = 30

Consider the differentiation of generating function (6.21) of Bessel’s Functions with respect to t

0

g(“tiz]e;(t_g S R NCE

m=-ow

0

> mi, 0tm

m=-—o

X 1 o
Or E(1+t—2j Z Jm(X)tm
m=-—o

0

- _

or 2 Z (x)tm+— Z 3,00 t"2 = Z me(x)tm !
= — m = — 0 = —

Comparing the coefficients t™* on both sides one gets

2 m—l(X) + )2( met(¥) = mIn(x)

.(6.20)

.(6.21)

.(6.22)
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o I )+ I @) = 0 ()

(b) Ima () =Imea () = 23’ (X) -.(6.23)
Consider the differentiation of generating function (6.21) of Bessel’s Functions with respect to x

X

l(t_lje@[t_:) - i 3 (ot™

2 t Me—oo

0

o Y E e 5 s

m=-—o m=—-—o

In(™ =23 30 S o

—®© m=-oo m=—oo

M

1
Or 5
2m

Comparing the coefficients t™ on both sides one gets

%Jm_l(x)—%Jerl(x) = J(x)
Or Jm—l(x) - Jm +1 (X) = 2']'m (X)
© It ) = S (0=35,() (624)

Subtracting equation (6.22) from equation (6.23), one gets

2t 00 = (0230
or Il (0 = %Jm(x)—J;n(x)

Example 6.2. Express Jg (X) in terms of Jg (X) and J; (X)
Solution : Consider the recurrence relation

2m
In-1 () +Im+1 () = TJm(X)
And let m =5, such that
10
B+ = 50
10
Or B0 = ~Is5(x) -3, () ..(6.25)

Again substituting m = 4 in equation (6.22), one gets
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J5 (%)

So that equation (6.25) becomes

8
=3, = 3500

5@ = Y 20,00-3500) 3,00
o 0 = (21 1,00~ 2oy

Substituting m = 3 in equation (6.22) and back substitution to J, (X) in above equation, one gets

80 6 10
k() = (7— )(; J3(x) —Jz(x))—7ag<x)
480 16 80
Or ‘]6 (X) = (X—2—7j J3(X) — (7 - 1] JZ(X)
Proceeding in a same way one gets
3840 768 18 1920 144
J(¥) = (———+—] J (x —(———+1] Jo (X
6() X5 X3 X ]_( ) X4 X2 0( )
6.7. DIFFERENTIAL FORM OF BESSEL'S FUNCTION
The differential form of Bessel’s function is given as
1d\"
In(¥) = (—1)mxm.(; &) Jo(%) ..(6.26)

This can be proved by using induction method, for that
Consider equation (6.23) and let m = 0, one gets

() -Jd (¥ = 2V (X
Using (6.6) from m = 1, one gets
L) = -3
Hence the above equation becomes
23X = 215X
Or - (¥ =Jo(x

Thus equation (6.26) is true for m = 0, consider that the equation is also true for m = n, so that
equation (6.26) can be rewritten as

()" x". (% %} Jo(%) .(6.27)

I ()
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To prove that it is also true for m = n + 1, consider

(—1)”+1x”+1-(1 i)MJo(x)

X dx

1d(1d)"
) n+1 n+1__(__) J(x
()" x I\ x dx 0(X) ..(6.28)

From equation (6.27) one gets

coenne = (23 500

X dx

Hence equation (6.28) becomes

(—1)”+1x”+1-(1 i)MJo(x)

(_1)n+1xn+1%%((_1)n X_an (X))

X dx
1d\"™ dJ_(X) m
_1n+1 n+1_(__) J - _ o\ M
o (-D"x < dx 0(X) i +XJn(X)

Using equation (6.24) one gets
1
1 1 1 d N+
(~))™ Ly (;&) Jo(¥) = J,,(%)
Hence the relation is proved using the induction method.

6.8. ORTHOGONALITY OF BESSEL'S FUNCTION

The orthogonality relation for Bessel’s function is given as

2
1 J aX
Rl
Here J,, (o) = J, (B) = 0 as o and [ are the roots of Bessel’s Function.
To prove it consider Bessel’s equation

2
202 () d (ax)

o s (@?x*~m?) 3 (0x)=0 ..(6.29)
d2J_(Bx &
and 2 om PO B g2z mzyy -0 (630
dx dx
J - (Bx J X
Multiply equation (6.29) with miB ) and (6.30) with m (%) and subtract

J(Bx) 2o|.1 (aX) dJm(ax)\ 3 () zdsz(Bx) B (Bx X))
g ) R G| @)X @0 () =0

dd, dJ
rdi(J Box ) () x T )J (@?~B2) X 3y (003, () =0
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Integrating with respect to x between the limits 0 to 1 one gets

1 1
J 230005 P B  (02 62) (3, 03, 0k =0
0 0

Oor ad,(Bx)x———— d( )—BJ( ) (B)

1
(0® =B?) [ X3, (@x)3, (BX) dx =0
0

0

(OLJ (B)J' (0(-) ﬁ‘] ((X,)J (B)) jx\] (aX)J (BX) dx=0
(a®-p?)

The first term becomes 0 because J, (o) = J, (B) = 0, therefore the above equation can be rewritten as

(631

1
a? %) [ xJ, (@x) 3, (BX) dx =0
0

Thus there are two conclusions from the above relation, one is either (a® — B?) is zero or

1 1
jome(aX) J,(Bx) dx is zero, that leads to the conclusion that, jome(ax) J(Bx) dx =0, when o # B.

When o = B, the left hand side of equation (6.31) takes 0/0 form, thus L hospital’s rule can be applied to
the LHS of equation (6.31) to get

tim Om®) I (@) -BI @I @) . BIn (@), B)
— lim =— |ljm ——_~ M~
P 201 asp 2
As Jn (B)=0
i PIn(@In @) B B)InB) 1
~ Jim 2Im T m B ,
b ™ 28 > (B))? (6.32)

Using the recurrence relation (6.23) and considering x = B, and using J,, (B) = 0, one gets

In+1(B) = -Im(B)
So that equation (6.31) becomes

1
ijm(aX) I (BX) dx (J' (B)? = (m+1(l3))
0
6.9. INTEGRAL REPRESENTATION OF BESSEL'S FUNCTION
Substituting t = €'? in equation (6.21), one gets
0 . l(eie_e—ie)

2 Jm (X) e|m9

m=-—
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or eix (sin 0)

i J o (X) (cos mO—isin mo)

m=—oo

Or  cos [x (sin ©)] + i sin [x (sin 0)]

i J o (X) (cos mO—isin mo)

m=-ow

Comparing the real and imaginary part on both sides, one gets

cos [x (sin ©)] = i J o (X)cos mo sin [x (sin 0)] = i J o (X)sin mo
cos [x (sin 0)] = J5(x)+ i I ()+I_,(x)) cos mo sin [x (sin 6)] = i (U () =J3_,(x)) sin mo
m=1 m=1

0 & m A
cos [x (sin O)] = Jp()+ 3 (3, (0 +(-D™J,, ())cos m0 sin [x (sin @) = 2 Om(¥) =D, (x))sin mo
m=1 m=1

The terms on the left hand side, i.e. belonging to cos [x (sin 0)] will vanish for odd m and that of right
side, i.e. belonging to sin [x (sin 6)] will vanish for even m, thus the terms could be rewritten as

cos [x (sin0)] = Jy(x)+2 i J o (X) cosmo ..(6.33)
m = 2 (even)
And sin[x(sing)] = 2 i J o (X) sinm@ ..(6.34)

m =1 (odd)

Multiplying equation (6.33) with cos n6 and integrating between the limits 0 to =, one will be able to
get

(o]

g T T
jcos [x(sin©)] cos B dO = J,(x) jcos nb do+2 Z I (%) jcos mo cos nd do
0 0 m = 2 (even) 0

T . .
Using the integral formula 'f; cos mO cos nd d9=5 3.+ the above equation can be rewritten as

0

IO+ D I,(0 8,

T
jcos[x (sin®)] cos m6 d6

0 m=2(even)
T

or [cos[x (sin6)] cos N0 dO = 7 J, (x) if n is even ..(6.35)
0

Similary, multiplying equation (6.34) with sin n6 and integrating between the limits 0 to =, one will be
able to get

T 0 T
jsin[x(sin 0)]sinn6de = 2 > J (X jsin me sin no do
0 m = 1(even) 0
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. . T . . T . .
Using the integral formula -[0 sin m6 sin n6 d6 = 3 3.+ the above equation can be rewritten as

0

s Z I (X) 8,

f sin [x (sin ©)] sin mo d6

0 m =1 (even)
g

Or j sin [x (sin ©)]sinm6 d6 = =J, (x) if nis odd ...(6.36)
0

Adding equation (6.35) and (6.36) one gets

}cos[x(sin 0)] cos n6 do + fsin [x (sin©)] sinm6 d6

wh (X) =
0 0
Or wh(X) = f(cos [x (sin©)] cos nb + sin[x(sinB)] sin mO) d6
0
Or (X)) = fcos (x(sin®) —nB) d6
0
Or Ih(® = 1'T[Ecos (n6 — x(sin0)) dO
Y
0

7. STURM-LIOUVILLE FORM OF SECOND ORDER LINEAR DIFFERENTIAL

EQUATION
The Sturm Liouville form of differential equation is given by
QyX) + Loy =0 (7.1)
where Q is second order linear differential operator given as
d d
Q = &(p(x)&)+q(x) (7.2)

here p(x) and q(x) are positive continuous functions and p’(x) is also continuous in the given domain
of the function. The operator Q defined by equation (7.2) is also known as the self adjoint operator. Any
second order linear differential equation could be written in the form of equation (7.1). To prove it consider
the operator of equation (2.1) as

Q' = P(x)£+P(x)i+P(X) 7.3
= P07+ -+ P -(73)

Multiply equation (7.3) with a factor ¢(x) given by
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Pl(X)
Po(X) g

o(x)

so that egn (7.3) could be rewritten as

. Pl(X) d_ Pl(X) P1(X) Pg(X)
Gooer = & p'[Po(X) dx?>  Py(x) pJ.PO(X) ax Py (X)
Pl(X)
expjpo( X)
= using %(aex) = ae”* one gets
_ P (X ) Pl(X) P (x)
- iju) dﬂ { pj%u) }m Py (X)
Pl(X)
expjpo( X)
_ Pl(X) P, () PL(X)
i X{ 0 [o500 dx} ) %500 &
(X))
so that d)Q = Qwithp (x) =X pj( Po(x )J dx and
_ Pz(X) Pl(X)
a0 = 5y o

Example 7.1. Write Bessel's differential equation in sturm liouville form.
Solution : Bessel's differential equation is given as

2d%y  dy

2 2 _
X dX+xdx+(x m3)y =20
with Po(x) = x4 P1()=x P, ()=~
PL(X) X dy — 1 -
S0 that exp jm dx = exp j—zdx = expj.; dx =exp (Inx) = x

P
500 2 a0 &

Multiply the Bessel's equation with

X2
— = X 0ne gets
X
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or dx \ dx X B

2
] -m N . .
withp (X) =x,q (X) = v o (X) =xand A =1, as the parameters of sturm liouville form of differential
equation.
Example 7.2. Write Hermite differential equation is sturm liouville form of differential equation.
Solution : Hermite's differential equation is given as

d’y  dy
—= = 2X—+2xy =
dx? dx y 0
with Po(X) = 1, Py(x)=—2xand P, (xX) =2n
L 1 P (x)
so that the multiplying factor exp | ===<dx could be found as
P, (X) '[ Po(X)
(—2x2) 2

expj—Zxdx = EXpL 5 Jze‘x

2
Multiplying Hermite equation with e™ one gets

5[ 42
e {M—ZX%+2xy} -0

dx?
)
— € — | 4+2Xy =
or X ax Y= 0
2 2
withp(x)= €, q(x)=0,2=2nand o (x) = € as the parameters of Sturm Liouville form of

differential equation

(  SUMMARY )

A\

1 Second order linear Differential Equations could be solved using power series or frobenius
method depending upon the nature of p(x) and q(x). If p(x) and q(x) are analytic then the
equations are solved using power series, however if p(x) and q(x) have regular singularity the
equations are solved using frobenius method.

1 Ordinary point of a differential equation is a point xq, if p(x) and q(x) are finite at xg and in its
neighbourhood.

1 Singularity of a differential equation is a point xq, where p(x) and q(x) fails to be analytic and

becomes infinite. If Lim (x—X,) p(x) and Lim(x—x0)2 q(x) are finite the singularity is known
X=Xy x—0




FROBENIUS METHOD AND SPECIAL FUNCTIONS

107

of the differential equation.

problems of physics are :

Legendre’s Polynomials

Hermite’s Polynomials

Laguerre Polynomials

Bessel’s Polynomials

Legendre’s Polynomials

Hermite’s Polynomials

Laguerre Polynomials

Bessel’s Polynomials
1
[ P ()P (x) i
-1

1
[ A" (%) BT (x) dx
-1

as regular singularity, however if these limits are infinite, the singularity is called irregular singularity

1 The Rodrigue’s formula solution of some of the differential equations useful in solving various

Associated Legendre’s Polynomials

1 The generating functions g (X, t) of some of the special polynomials are given as :

1 The orthogonality of some of the special functions are :

2 . 0if 1=m
ore1om Wi S'mz{l if 1=m
(I+m 2

1
Pi(x)= Hd ( )

(d™p,(x))
() = (1" (1™ [~

2 dV 2

H )= (-1)"e"

kxd

L (9= (-D¥e d—(xk e )

3@ = N (22 3509

1-2xt+t? I(X)t
+
Zw (x)t

Lk (x)t

—/
1_ xtlt_z

1
X/Z(__) Z 300t

(—m)! 21+1
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[ HH, M dx = V72" vis,,
JeLoLde = k),
0
1 2
[Jma (0x)]
{me(ax) 3.(BX) = 1Tsaﬂ

QUESTIONS
MULTIPLE CHOICE QUESTIONS

1. The general form of linear differential equation of second order

@ @O*+P®D+Q()y=0 (b) (O*-PX)+Q(x)y=R(X)
© ©O*+P®+QE®)y=RKX (d O*-PKk9+Qk3)y=0
_ o d%y L dy .
2. Ify=e?isa solution to dt_z - 5E+ ky = 0, what is the value of k ?
@ 1 (b) 4
© 0 d) 6
3. A differential equation is considered to be ordinary if it has
(@) one dependent variable (b) more than one dependent variable
(c) one independent variable (d) more than one independent variable

2
4. For differential equations (:_y\\ + cosx y= x3, select the order of the differential equation and
X

Linearity
(@ Oand linear (o) 1and linear
(¢) 1andnon linear (d) Oand linear

5. The Differential equation di{(l— x2 ):—y} + n(n+1) y =0, with n as a positive integer, is
X X

(@) Legendre’s Differential Equation (b) Bessel’s Differential Equation
(c) Chebyshev’s Differential Equation (d) Hermite’s Differential Equation
. _ _,d2%y dy s _ . .
6. The differential equation X o2 +xd—X+ (x©—=n<)y=0, with nas an integer, is
X
(@) Legendre’s Differential Equation (b) Bessel’s Differential Equation

(c) Chebyshev’s Differential Equation (d) Hermite’s Differential Equation
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7.

10.

11.

12.

13.

14.

15.

The function P(1) is given as

(@ Zero (b) -1
© Pn(-1) ) 1
The generating function for Legendre’s function is given as
1 1
(@) (1+2xt+t?)2 () (1+2xt+t?) 2
1 1

© (1-2xt+t2)2 d) (1-2xt+t?) 2
Pn(x) is considered as
(@ Non terminating series (b) Terminating Series
(c) Oscillatory Series (d) None of these
Qn(x) is considered as
(@ Non terminating series (b) Terminating Series
(c) Oscillatory Series (d) None of these
All the eigen values of P,(x) are
(@ Imaginary (b) Real and lie between -1 to 1
(¢) Real and lie between 0 to o (d) Real and equal
The generating function for Bessel’s function is given as

Xf 1 _Xfi 1
(a) 62( t) (b) e 2( t)

- t+l X t 1
© e 2( t) (d) e2(+t)
The Rodrigues formula for Legendre’s polynomials is given as

L d™ .2 a\n 1 d" 2 \na

@ Py (0)="=——(x*-1) () Py (X)=————(x*-1)

n (%) 2" dx" " ni2" dx"

1 d" 2 .n nt d" 2 .\n-t

© Py(x)= —(x*-1) @ Py(X)=—-——(x"-1)

" ni2" dx" n 20 ax"

The paynomial 2x* + x + 3 in terms of Legendre’s polynomials is given as

@) 5 (P00 —3P; (9 +11P () (B) 5 @P0) + 3P; (9~ 1Py (¥)
© 3 (P00 + 3Py (9 +11Py () @ 5 @P00 - 3P1 ()~ 11 Py (¥)
In the Legendre’s polynomial Py (x)=2 (x5 —%ﬁ +% x) , A isgiven as
@ 2 0 =

63 63

© -5 @ 7o
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16.

17.

18.

19.

20.

d2y (dy)\* ,, [d2y)
The degree of +2|—| = x“log|—=
: dx 2 Lax) gL dx? J
(@ One (b) Two
() Four (d) Undefined

Let P,(X) be a polynomial of degree n with real coefficients defined in the interval 2<n<4. If

4
jz P, (X)P,, (x)dx=8 .. , then

@ Py(x) =%and P, (X) =\/§ (-3-X)

(b) Po(x)=izandp1(x)=ﬁ(3+x)

N
© Py(x) :%and P, (X) = \g(s—x)

@ Py(x) =%and P, (X) =\/§(3—x)

The points where the series solution of the Legendre differential equation

2
(1-x2) 34 _ 2xd—y+i(§+ 1) y=0
d)(2 dx 2\2
will diverge, are located at
(@ Oand1 (o) Oand -1
3 5
() -land1 (d) > and >
. o d?y  q dy . .
Consider the Bessel equation with n =0 > +—d— + y =0, which one of the following
dx X ax

statement is correct?
(@) Equation has regular singular points at x = 0 and x = co.
(b) Equation has 2 linearly independent solutions that are entire
(c) Equation has an entire solution and second linearly independent solution singular at x = 0.
(d) Limit x — oo, taken along x-axis, exists for both the linearly independent solutions.
Given the recurrence relation for the Legendre polynomials
@n+1)XP, (X) = (N +1) Pyy1(X) +NPpg (X)
Which of the following integrals has a non zero value?

@ I:XZPn(X)Pm(X)dX (b) j:xPn(x)sz(x)dx

© [ xIPy ()] dx @ [ xR, (0P, (00K
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21.

22.

23.

24,

25.

26.

217.

The generating function g(x,t)= Z:=o P, (x)t" for the Legendre polynomials Py(x) is

1
g ()= (L—2xt+t2) 2 .The value of P (-1) is
@ 52 (b) 32
0 +# (d -1

Given g(x,t)= Z:=0Pn (x)t"  for | t| < 1, the value of Ps (-1) is

(@ 026 (b 1
(cp 05 (dy -1

n
Given that :=o Hp, (X)tn—|=e_t2 +2X " the value of H,(0) is

(@ 12 (b) 6
© 24 d) -6

In the function P, (x)e~ x? of a real variable X, Pn (X) is polynomial of degree n. The maximum

number of extrema that this function have is

@ n+2 (0 n-1

() n+1 (d n

The polynomial f (x) = 1 + 5x + 3x? is written as linear combination of the Legendre polynomials

Po(X) =1, Py (X) =X, Py(X) = % (3x2 = 1) as f (x) = ZnCn Py, (X). The value of Cy is

(@ Y b »%
c 2 (dy 4
Let x; (t) and X, (t) be two linearly independent solutions of the differential equation

d?x dx 3
02 +2W+f(t)x—0,
dx, (t) dx; (t) o
And let w(t)=x, (t) pm - X, (1) pm , ifw(0) = 1, then w(1) is given by
@ 1 (b) €
() e (d) 1/e?

The value of the integral I;x[Jl (x)]2 dx is equal to
@ [P (b) 0
© % [3, (1) @ [ @)

SHORT ANSWER TYPE QUESTIONS

1.

Discuss whether two Frobenius series solutions exist or do not exist for the following equations :
2y +x (x+ 1)y - (cosx)y=0
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9.

10.

Given that >~ H (x)i = e~ +2%_Find the value of Hy(0)
n=0" """ ’ A
The Hermite Polynomial H,(X), satisfies the differential equation
2
d2H, (x) oy dH, (x)

dx" dx
Prove that the corresponding generating function

¥ Ha (0 = G

+2nH,(X) = 0.

satisfies the equation

202G oG oG
— 2X== 2t— =
2 Xt t at 0

If the function f (x) is defined by the integral equation

X
[f0dx = xG (1,9
0

Prove that It can be expressed as

i x"MP_ (1) P, (1)

n 0

Prove that the second order derivative of the Hermite polynomial of nth order, i.e. Hyy (n >2) can
be written as 4n (n— 1) H,_, (x).

1
Find the value of the integral j_l(l— x?2) [P (x)]? dx..

Prove that any function f (x) which is finite and single valued in the interval -1 <x < 1, and which
has a finite number of discontinuities within this interval can be expressed as a series of legendre
polynomials.

Prove that

2n(n+1)
(2n-1) (2n+1)(2n+3)

1
[ x2Pg ()Py_y (X)X =
-1

1
Evaluate j_lxz [P, (x)]? dx

Prove that P_ ¢ + 1) (X) = Pp (X)

LONG ANSWER TYPE QUESTIONS

1
2.

Solvex (x-1)y"+(Bx-1)y’'+y=0
Find series solution of the differential equation

d? d
y+—y—y =0

X dX2 dx




FROBENIUS METHOD AND SPECIAL FUNCTIONS

113

w

©

0, -1<x<0

Expand the function f (x) = { 1 D<x<1

in terms of Legendre's polynomials.

Prove that any arbitrary function f (x) could be represented in terms of Legendre's polynomials,

subjected to the condition that f (x) is defined fromx=-1tox = 1.

Express the function

; _ 0, -1<x<0
® = x O<x<1

in terms of Legendre's Polynomials

. cos X
Show that [ J 5 (x)=—sinx —
2 ) X

Prove that
_ /L i
Jyp (X) = - sin x
Prove that X2 J,” (X) = (N2 =n=x%) J, (X) + X Jn+1 (X)

2% 2
Show that H, (x) = 2" +1 e* je_t te, (%j dt
X

10. Using the generating function of Hermite polynomials evaluate the value of (a) Hy(x), (b) Hz (X)

HINTS / ANSWERS

MULTIPLE CHOICE QUESTION

1
11.
21.

20.
21.
22.

23.

@ 2@ 3@ 40 5@ 6 (b
(b) 12. (@ 13.() 14. (0 15 (0 16. (d)
@ 22.(d) 23. (@ 24 (0 25 () 26.(d)

7. (d)

17. (d)
27. (¢

2
Hint : Substituting y:e2t in u_ 5ﬂ +ky=0, one gets
dt 2 dt
402 102t + ke?t = 0
Or 4-10+k =0

Hint : Short answer type question no. 8

Hint: P, () =(-)"Py()) = ()" 1=(-D)"and forn=3,P5 (-1) =-1
Hint: P, (1) = (-1)"P, 1) = (-)".1=(-1)"and for n =5, P5 (-5) =-1

N t" _ o —t242t © 0 ot g2
Hint : Zn:oHn(X)ﬁze +2t Zn:OH”(O) ¢ =1-t°+

Comparing the coefficients of t* one gets

8. (d)

18. (c)

4 1°

9. (b

19. (c)

3!

10. (a)
20. (d)



114

MATHEMATICAL PHYSICS-II (Sem. 1ll) Hons.

25.

26.

217.

4 41
H4(o)t4_|=i = Hy(0)=2;=12

2!

Hint : f (x) = 1 + 5x + 3x?
3%
Thus f(x)

2P, (x) +1

2P2(X) +1+ 5P1(X) +1= 2P2 (X) + 5P1 (X) + 2P0 (X)

Hint : W=e_IP(t)dt here P(t) = 2, so that W=e_IZdt e 2t thus w (1) = e7?

1
Hint : Using orthogonality relation of Bessel equation one have IOX[J o (x)]?dx = %[J,Hl ()]

SHORT ANSWER QUESTIONS

1.

The equation can be rewritten as

. X(x+1) = cosx
2x2 2x2 -
Hence x = 0 is a singular point to check its singularity, consider
X(x+1
lim (x—0) XDy xel 1
x—0 2x2 x—0 2 2
Similarly
lim (x-0)222X = lim cos x=1
x—0 2x2 x—>0

Both are finite hence Frobenius series solutions exist.

@ th o —t2421x o0 th 42 2
anoHn(X)W—e :anoHn(O)W—e =1-t“+

Comparing the coefficients of t* one gets

t4 1 4
H4(0)? = ?2 H4(0)—?—12

0 tn
> neon (X)W= G(x,t)
Differentiating the above equation w.r.t. x one gets
o0 tn
Z Hpy (X)F
n=0 :

Also differentiating w.r.t ‘t”, one gets
oG

n=0

Multiplying the above equation with t one gets
0
oG t"
— = Zoan (X)F
n=

Substituting these values in Hermite’s equation one gets

3 nH, (0= Y H
nH, (x)——= N
ot n=0 n! n=0

t4 8
21 31

G'(x1), Y H;{(x)%: G (x,t)

tn—l

)
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1

4 G(1) = (L-2x+x?) 2 =—L==3 " x"P, ()
Also
h X
{f(X)dx = XG(LX)= T2
Differentiating both sides one gets
f() = ﬁ = Z:ZOX”Pn (1).Z°r§:0xmpm 1)

2 n
5. The generating Function for Hermite polynomial g2t =Z :onn (X)tn—,

Considering the second derivative w.r.t. x one gets

2 _ 0 HN tn

a2e2t? = 3 (HI (0

© tn+2 © . th

or 4Zn=0Hn(x)—n! = Zn:oHn(X)ﬁ

Comparing the coefficients of t" on both sides, one gets
HY (X) = 4n(n-1) Hyz (¥)

2
2n+1

1
6. Using orthogonality relation of Legendre polynomials one have IO[Pn (x)] dx=

And also e l=x?)P; (O] == (n- 1) P, (9
Multiply the two sides with P, (x) and integrating the two sides w.r.t. x between the limits -1 to 1
one gets

1 d 1

j&[(l—xz )Py OOIP, (X)dx = — [ n(n+1) P, (x) P, (x)dx

-1 -1

2n(n+1)
2n+1

1 1
~[1a-x®)[P; ()12 dx = —n(n+1) [ [P, (x)]? dx=-
-1 -1

7. Let FO) = AgPy (X) + APy (X) + APy (X) + . = 2 AnPy (X)
n=0

Multiplying both sides by P, () dx and integrating with respect to x from x = -1 to x = 1 gives

1

0 1
[FOOPL ) dx = Y AL [P, (x)Py (x)dx
-1 n=0 -1

By means of the orthogonality property of the Legendre polynomials one can write
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8.

iA 25 _ }f(x)P (x) dx
= n2n+1 ° m
1
or Amﬁ - _jlf(x)Pm(x)dx
2m+1 t
or Ap = 5 [ FOOP, (X)dx
-1

In the recurrence relation (2n+ 1) XxP, (X) = (N + 1) P41 (X) + nPy_1 (X)
Replacing n by n + 1 and n — 1, respectively one gets
@n+3)xPrs1(X) = N+2Prsa(X)+(n+1)P,(x) (1)
And
@n=DxP1 (X)) = nPy(X)+ (n=1)Pr_> (X) (2)
Considering the product of equation (1) and (2) and integrating between the limits —1 to 1, one
gets

+1 1
(2n+3) (2n-1) szPn_l(x)Pn_l(x)dx = n(n+2) an (X)Ppio (X)dx+
-1 -1

1 1 1
n+1) | [Py (12 dx+(n=1)(n+2) [Py 5 (X)Py, (x)dx +(n? =1) [Py () Py, (x)dx
-1 -1 -1

Using orthogonality relation of Legendre polynomials one gets
+1

2 _ 2n(n+1)
(2n+3) (2n-1) _jlx Pret (X)Pp_g (X)d = — ——=
i 2n(n+1)

.[ X2Pp g (X)Pyg (x)dx =
|

(2n+1)(2n+3)(2n-1)

Squaring the recurrence relation (2n + 1) xP, (X) = (n + 1) P, + 1 (X) + nP,_ 1 (x) and integrating
between the limits -1 to 1, one gets

+1 1
(2n+1)2 [ x2[P, (0P dx = (n+1)? [P,y (x)]? dx+
-1 -1

1 1
2n(n+1) [Py (X)Pyy (x)dx+n? [ [Py (x)]? dx
-1 -1

Using orthogonality relation of Legendre polynomials one gets

2(n+1)? . 212
2n+3 2n-1

+1
(2n+1)2 [ x2[P (x)]%dx =
-1
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2(n+1)2 N 2n2

+1
2n+1)2 [ x2[P. (x)]% dx
( ) L_ [P ()] 2n+3 2n-1

2(n+1)? N 2n?
(2n+3)(2n+1)2  (2n-1)(2n+1)?

+1
[ x2[P, () dx =
-1

10. From Laplace first integral, one knows

Pn (%)

%ﬂx +,/(x? -1) cos (p}n do

Replacing n with — (n + 1) one gets

P_n+1) (X

b —(n+1)
%j[xi./(xz -1) coscp} do
0

S 1
T

- o de
[x +J(x? -1) cos q)}

Which is the representation of legendre polynomial as per the Laplace second representation, i.e.

o —3

1

ey 49
[x +,/(x?-1) cos q)}

1

Pr( =

o +—3

Hence P _ + 1) (X) = Py (X)
LONG ANSWER QUESTIONS
1. Hint : Solve using Frobenius method and the value of o. = O the one solution will be
y = ag(L+x+x2+.... x4 = 2x" ag
The second solution is given by

(aylw 0 ( r,m - n\

La_me=0 i a_mLaO " nZ=‘E)X J
[aoxmlnxi X”J = agln xixn

n=0 m=0 n=0

which is the second solution so that

8

<
1

agp
n

2. Hint: P (x)=% and Q(x):‘T1 , thus equation could be solved using Frobenius method with o =0,

o o]
x"+ > Inx x"
0 n=0
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thus similar method as adopted for problem could be applied to solve this equation.

1 N
I

2. 3P (X) dX, then
n=0

Ans. y

3. Hint: f(x)

( \ +1
a = k'*%) _jlf(x)P,(x) dx

0 1 1
= (|+%j[jop, (x) dx + [Py (x) dx]:(n%jjpl (x) dx
-1 0

0
17 17 1 ' 1
ay = EIPO(x)dx=E jl.dx:E(x) =3
0 0 0
1
t 3 3 x? 3
a, = _J.P|(X)dX=EIXdX=?T =Z
0 0 0
_ 1 3
So that f(x) = EF>0(x)+zpl(x)+ .......

4. Hint : Consider that the function f (x) defined from x = — 1 to x = 1 could be represented as
f(X) = aiP1(X) + aPy (X) + ag P3 (X) «.eevee. +a P (X
Multiply the above egn. with P,(x) and integrate with respect to x between the limits x = — 1 to
X =1, one gets
+1 +1 +1
[ FO)P (x)dx = ay [Py (x) P, (x) dx+ay [Py (x) Py (x)dx
-1 -1 -1
+1 +1
ot ay [ PP, (X)dx+tay [ Py (X)P, (x)d
-1 -1
Using the orthogonality relation of Legendre's polynomials given by egn. (3.16) one gets
+1
[ ()P, (x)dx

-1

2
a1(0) + ap(0) + ....an- T

Or an

+1
2n+1
T_jlf(x) P, (x) dx

5. Hint : Solve it as Problem 3.

Ans. f(X) %Po(x) +%P1(x) + %PZ (X) 4.
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6. Hint : Considering In®¥) =

|
DM
>
g/\
+
2
=l
|
N—

rearranging the terms one gets

In(¥) = )

Let m=- % one gets

NG I A I SR G U 6 b
_% - \2} ngon!(n_i\!\zj
U 2)
A
and rl-d) - wzﬂ
I a0 _ ()T (et 0
Hence ) - 2 ,E)nl(Zn 3y udn \2)

_ 2 0 ( 1)n2n—1( \Zn

Ty nx x nzé)nl(Zn 32/

2 > (_1)n 2n
\/n_j X nzé)2n!!(2n—3)!!X

2 ( 1" (2n-1) 2N
X X = 0 (2n)I

2 1 % (1 1 |,2n
x ,E) {(Zn Y (2n)!}X

= il
X = (2n=-1)!  x (2n)!

Ta2(X) = = 2 { Smx_cosx}
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0 ( 1)n ( \ 2n+m

7. Hint: In(®) = E}nl(mm)lk—)
For m = %
; (X) _ i (_1)n (L\2n+%
vz - 1.2/
n=0 n!(n+3j!
(X\UZ 00 ( 1)n 2n+1 (X\Zn
2 () = %) ,E)n!(zml)!!ﬁ \2)
_ (X 12 o (_1)n2

X2n

X)
-2 2 eneniynd

I
>
:1|'\’
|M8
~
|
[N
N
>
<

= sin X
XTI:

8. Hint : Consider the Bessel's differential equation

2
xzd—2y+x%+(x2—n2)y: 0
dx

and the solution is J, (x) such that the above egn. could be rewritten as
23" ()+x3, () + (x2 =n?)J, (x) =0

Also xJ," (X) = N (X) =X dnag (X)
Substituting (2) in (1), one gets
X2 30" () + 03y () =X Jn+1 () + (=nH) Iy (x) =0
Or X2 () =X Jps1 () = (P =X =) J (x) =0
O XJ" ()= =x*=n) J () +xI+1(x)
10.  Hy(X) = 4x°— 2, Hg(x) = 8x>— 12x

(1)
(2





