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This chapter has been devoted to the introduction of differential equations and their applications.
These equations describe about the working of nature and help in studying the population growth, fluid
motion and many more real world problems including the launching of satelittes. The solutions to differential
equations are not numbers but the functions that describe the variation of the function. There are some
differential equations that could not be solved using the simple methods available to solve these equations.
In such a case, the solution is obtained using Power series or Frobenius method depending on the nature
of the points of the differential equation.

1. DIFFERENTIAL EQUATIONS
A differential equation is a relationship between a function of one or more independent variable and

its derivatives with respect to the independent variables. For example
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In equation (1.1) y is a function of single variable i.e. x whereas in equation (1.2) and (1.3) y is a
function of two variables i.e. x and t. These equations play a very useful role in solving physical problems
and hence are of paramount importance in physics. For example

The different equation
2

2
d x
dt

= – kx ...(1.4)

is widely used to solve the problem of simple harmonic oscillator, and the equation
2

2
I I5 8Id d

dtdt
  = E0 sin wt ...(1.5)

is utilized in determining the current I as a function of time t in an alternating current circuit.
Differential equations can be broadly classified into two classes :
Ordinary differential equations : A differential equation which contains a function of single independent

variable and one or more of its derivatives with respect to the independent variable is called ordinary
differential equation. Equation (1.1), (1.4) and (1.5) are examples of ordinary differential equations.
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Partial differential equations : A differential equation which contains a function of two or more
independent variables and one or more of its derivatives with respect to the independent variables is
called partial differential equation. Equation (1.2) and (1.3) is an example of ordinary differential equations.
Partial differential equation will be discussed in detail in chapter 3.

Before getting the solutions of differential equations, it is necessary to get introduced with the
terminologies used in context to the differential equations. Thus the study of differential equations will be
started after clarifying some definitions.

1.1. THE ORDER OF A DIFFERENTIAL EQUATION
The order of the highest derivative involved in the equation is called the order of the differential

equation. The order of all the differential equations (1.1) – (1.5) is 2 as the highest derivative involved in
all these equations is 2.

1.2. DEGREE OF A DIFFERENTIAL EQUATION
The degree of a differential equation is the exponent of the highest order derivative present in the

differential equation. The degree of all the differential equations (1.1) – (1.5) is 1, and that of the differential
equation
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is 2, the exponent of highest order of derivative, i.e. 
2

2
d y

dx
.

1.3. SOLUTION OF A DIFFERENTIAL EQUATION
A solution of a differential equation is a relation between the dependent and independent variable

without the involvement of its derivatives, but it should satisfy the given differential equation. There are
many methods to solve the differential equations; however this chapter is devoted to the solutions of
second order ordinary, homogeneous, linear differential equations of the form

   
2

2
P Q 

d y dy
x x y

dxdx
= 0 ...(1.7)

using power series method. In equation (1.7), P (x) and Q (x) are known functions of x.  Equation (1.7) has
two linearly independent solutions y1 and y2, subjected to the condition 1 y1 + 2y2 = 0, where 1 and 2
should be zero for y1 and y2 to be linearly independent, so that the solution to equation (1.7) can be
represented as

y = c1y1 + c2y2 ...(1.8)
To prove that equation (1.8) is a solution to equation (1.7), consider 1st and 2nd derivatives of

equation (1.8) and substitute in equation (1.7), so that one may get
c1y1 + c2y2 + P (x) (c1y1 + c2y2) +  Q (x) (c1 y1 + c2y2) = 0
Such that
c1y1 + P(x)c1y1 + Q (x) c1y1 + c2y2 + P (x) c2y2 + Q (x) c2y2 = 0
Or
c1 (y1 + P (x) y1 + Q (x) y1) + c2 (y2 + P (x) y2 + Q (x) y2) = 0 ...(1.9)
As y1 and y2 be the solutions of equation (1.7) hence equation (1.9) may be written as
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c1 (0) + c2 (0) = 0
Proving that the general solution to equation (1.7) is given as (1.8)

2. SERIES SOLUTION OF DIFFERENTIAL EQUATION

Any arbitrary second order linear differential equation (SOLDE) of the form
2

0 1 22
P P (( ) ) P ( ) 

d y dy
x

dxd
x x y

x
= 0 ...(2.1)

can be converted into the general form of differential equation (1.7) by dividing equation (2.1) with P0(x),
such that equation (2.1) can be rewritten as
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x

x
x

 , where P(x) and Q(x) may or may not be finite. Depending

on the nature of P(x) and Q(x), the ordinary and singular points of the SOLDE can be defined.

(a)  Ordinary Point of a Differential Equation
 The point x0 is said to be an ordinary point of the differential equation (1.7) if both P (x) and Q (x) are

analytical (A function which is finite at every point and its neighbourhood) at x = x0, i.e., they are finite at
x = x0

(b)  Singular Point of a Differential Equation
The point x0 is said to be a singular point of the differential equation (1.7) if both P(x) and Q(x) or one

of them fails to be analytical at x = x0, i.e. they becomes infinite at x = x0. Singular point may further be
classified into two categories.

Regular Singular Point : If x = x0 is a singular point of differential equation but both

0
0 )lim ( P ( )

x x
x x x



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2
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x x
x x x




are finite, the singular point x0 is said to be regular singular point of equation (1.7)

Irregular Singular Point : If x = x0 is a singular point of differential equation and both or one of the
limits

0
0 )lim ( P ( )

x x
x x x



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0

2
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x x
x x x




becomes infinite, the singular point x0 is said to be irregular singular point of equation (1.7). The
above classification is mandatory as the solution of SOLDE depends on the nature of P (x) and Q (x).
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Example 2.1.  Check if x = 0 is an analytical point or not for the differential equation.

2
2

2 ( 2)  d y dyx x ydxdx
= 0 ...(2.2)

Solution : Comparing equation (2.2) to equation (1.7) one gets
P (x) = 0  and Q (x) = x2 + 2

Which are both finite at x = 0 making x = 0 an analytical point of equation (2.2)
Example 2.2.  Check the behaviour of point x = 0 for the differential equation

2

2
6d y yxdx

= 0 ...(2.3)

Solution :  Comparing equation (2.3) to equation (1.7) one gets

P (x) = 0 and Q (x) = 
6
x


Here P (x) is finite for x = 0 but Q (x) is infinite making x = 0 a singular point. Thus to check the
behaviour of x = 0 for Q (x) consider

 2
0

6Lim( 0)
x

x
x

 =
0

Lim( 6 ) 0 finite
x

x


  

Since the limit is finite for x = 0. Hence x = 0 is a regular singular point of equation (2.3)
Example 2.3.  For the given differential equation

2
2

24 3 (1 2 )  d y dyx x x ydxdx
= 0 ...(2.4)

Check if x = 0 is an analytic point or not.
Solution :  Converting equation (2.4) to general SOLDE one gets
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Providing  P(x)  =  2
3 1 1and Q( )
4 24

x
x xx
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which becomes infinite at x = 0,  thus x = 0 is not an analytic point, but a singular point. To check the
behaviour of singularity consider
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Since the two limits are finite hence x = 0 is a regular singularity.
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2.1. SERIES SOLUTION WHEN x = x0 IS AN ORDINARY POINT (POWER SERIES
METHOD)

The general series solution to equation (2.1) is given as

y =
0




 n

n
n

a x ...(2.5)

If x = x0 is an ordinary point such that

y =
1

0

n
n

n

dy
na x

dx





 

And y =
2

2
2

0
( 1) n

n
n

d y
n n a x

dx





 

Substituting the values of y, y, y in equation (2.4), one will get the result as

2 1
0 1 2

0 0 0
P ( ) ( 1) P ( ) P ( ) 0n n n

n n n
n n n

x n n a x x na x x a x
  

 

  
     

Simplifying the equation and comparing the coefficients of x and its exponents (powers) equal to
zero, one will be able to find the values of different ans  in terms of a0 and a1. Substituting the values of
ans obtained in equation (2.5), the solution to equation (2.1) could be obtained.

Example 2.4.  Solve the SOLDE 
2

2
2

( 0)1
d y dy

x x y
dxdx

     using power series method.

Solution : The differential equation
2

2
2

(1 ) d y dyx x y
dxdx

   = 0 ...(2.6)

can be rewritten as
2

2 2 2)
1

(1 (1 )
d y dyx y

dxdx x x
 

 
= 0

Such that 
2(

P( )
1 )

xx
x




 and 2(
Q( )

1 )
xx
x




 are finite for all real numbers, hence no singular

point exists for the differential equation (2.6).  The general series solution to the equation is

y =
0

n
n

n
a x






such that y  = 1

0

n
n

n
na x







And y   = 2

0
( 1) n

n
n

n n a x







Substituting the values of y, y, y in equation (2.6) one can obtain the relation

2 2 1

0 0 0
(1 ( 1)) 0n n n

n n n
n n n

x n n a x x na x a x
  

 

  
      
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Or     2

0 0 0 0
( 1) ( 1) 0n n n n

n n n n
n n n n

n n a x n n a x na x a x
   



   
        

Or  2

0 0
( 1) ( ( 1) 1) 0n n

n n
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n n a x n n n a x
 



 
      

Or   2 2
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( 1) ( 1) 0n n

n n
n n

n n a x n a x
 



 
    

Equating the coefficients of xn on both sides one can obtain, xn in the first term could be achieved by
replacing n = n + 2

(n + 2) (n + 1) an+2 + (n2 – 1) an = 0

Such that an + 2 = –
2( 1) ( 1)

( 2 )( 1) ( 2 )n n
n na a

n n n
 

 
  

It is known as the recurrence relation, useful for finding the terms of a sequence in a recursive
manner. Substituting n = 0, 1, 2, 3, 4 ...., one can obtain the values of ans in terms of a0 and a1 as

a2 = 0
1 ,
2

a a3 = 1
0 0,
3

a 

a4 = 2 0
1 1 1.
4 4 2

a a  a5 = 3
2 2 . 0 0,
5 5

a  

a6 = 2
4 0

3 3 1 1( 1) . .
6 6 4 2

a a   a7 = 5
4 4 .0 0
7 7

a  

a8 = 3
6 0

5 5 3 1 1( 1) . . .
8 8 6 4 2

a a          

Such that a2n = 1
0

(2 3)!!
( 1)

2 !
n

n
n

a
n

 


[The double factorial (!!) also known as factorial of (2n – 3) is the product of all odd integers upto
2n –3]

And a2n+1 = 0
Thus the solution to equation (2.6) is

y = a0 + a2x2 + a4x4 + a6x6 + ...+ a1x + a3x3 + a5x5 + a7x7+ ...

or y = 2 2 1
2 2 1

0 0

n n
n n

n n
a x a x

 



 

  ...(2.7)

Substituting the value of a2n and a2n+1 calculated above in eqn. (2.7) one obtains

or y = 1 2
0

0

(2 3)!!
( 1)

2 !
n n

n
n

n
a x

n









Example 2.5. Solve the SOLDE y + xy + y = 0 using power series method.
Solution : The differential equation

y + xy + y = 0 ...(2.8)
is already in its general form with P (x) = x and Q (x) = 1 finite for all real numbers, hence no singular

point exists for the differential equation (2.8). The general series solution to the equation is
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y =
0

n
n

n
a x






such that

y = 1

0

n
n

n
na x







And

y  2

0
( 1) n

n
n

n n a x







Substituting the values of y, y, y in equation (2.8) one can obtain the relation

2 1

0 0 0
( 1) 0n n n

n n n
n n n

n n a x x na x a x
  

 

  
     

Or                                              2

0 0 0
1 0n n n

n n n
n n n

n n a x na x a x
  



  
     

Or                                                  
2

0 0
( 1) ( 1) 0n n

n n
n n

n n a x n a x
 



 
    

Equating the coefficients of xn on both sides one can obtain
(n + 2) (n + 1) an + 2 + (n + 1) an = 0

Such that

an+2 =
     

1 1
2 1 2n n
n a a

n n n
  

  

Substituting n = 0, 1, 2, 3, 4,...., one can obtain the values of ans in terms of a0 and a1 as

a2 = 0
1 ,
2

a a3 = 1
1 ,
3

a

a4 = 2
2 0

1 1 1( 1) .
4 4 2

a a   a5 = 3 1
1 1 ,
5 5.3

a a

a6 = 3
4 0

1 1 1 1( 1) . .
6 6 4 2

a a   a7 = 5 1
1 1
7 7.5.3

a a

                                  

a2n = 0
( 1)
2 !

n

n
a

n


a2n+1 = 1
( 1)

(2 1)!!

n
a

n



Thus the solution to equation (2.6) can be obtained by substituting the value a2n and a2n + 1 in eqn.
(2.5) as
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y =
   

 
2 2 1

0 1
0 0

1 1

2 1 !!2 !

n n
n n

n
n n

a x a x
nn

 


 

 



 

Example 2.6.  Solve the differential equation 
2

2
2

d y y
dx

  = 0 using series method.

Solution : The differential eqn. is already in general form with P (x) = 0 and Q (x) = 1,  Hence there is
no singular point for the differential eqn. The general series solution of the eqn. is

y =
0

n
n

n
a x






such that y = 1

0

n
n

n
n a x







and y = 2

0
( 1) n

n
n

n n a x







Substituting the values of y, y and y in the given eqn. one gets

2 2

0 0
( 1) n n

n n
n n

n n a x a x
 



 
    = 0

or (n (n – 1) an + 2an–2) xn–2 = 0
Equating the coefficients of xn–2,  one gets

n (n – 1) an + 2an–2 = 0

or an =
2

2( 1) nan n 



Substituting n = 2 one get,

a2 =
2

02
a

Similarly substituting n = 3 in the recurrence relation of an one gets

a3 =
2

13.2
a

Proceeding in the same way one gets

a4 =
2 4

2
2 0( 1)

4.3 4.3.2
a a   

a5 =
2 4

2
3 1( 1)

5.4 5.4.3.2
a a   

a6 =
2 6

3
4 0( 1)

6.5 6.5.4.3.2
a a   
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a7 =
3 6

1
( 1)

7.6.5.4.3.2.1
a 



a2n =
2

0
( 1)

(2 )!

n n
a

n
 

a2n + 1 =
2

1
( 1)
(2 1)!

n n
an

 


So that the solution to the given differential eqn. could be obtained as

y = 2 2 1
2 2 1

0
( )n n n

n n n
n

a x a x a x






  

y =
2 2

2 2 1
0 1

0 0

( 1) ( 1)
(2 )! (2 1) !

n n n n
n n

n n
a x a x

n n

 


 

   
 

Substituting (–1) = i2 and considering a1 = (–1)n (ia0) one gets

y =
2 2 1

0 0
0 0

( ) ( )( 1)
(2 )! (2 1) !

n n
n

n n

i x i xa a
n n

  

 

   
 

or y = a0eix = a0 [cos x + i sin x]

2.2. SERIES SOLUTION WHEN x = x0 IS A REGULAR SINGULAR POINT
(FROBENIUS METHOD)

The general power series solution will not be the solution to equation (1.7) anymore and could be
proved by rewriting the equation (1.7) as follows

2

2
d y
dx

=    P Q
dy

x x y
dx

  ...(2.9)

If 
0

n
n

n
y a x




   is the solution to the above equation around x = x0, a regular singular point, then y,

yand y are analytic at x = x0, which implies left hand side (LHS) of equation (2.9) is finite and analytic.
On the right hand side (RHS), either P(x) or Q(x) or both fail to be analytic indicating that LHS  RHS.

Hence 
0

n
n

n
y a x




   cannot be a solution to equation (1.7). But the solution is still achievable in terms of

infinite series. The method of finding the solution in terms of infinite series for a second order linear
differential equation having a regular singular point is known as method of Frobenius. The method
assumes that for x = x0, as a regular singular point, the solution of equation (1.7) has the general form

y = 0
0

( )n
n

n
a x x





 ....(2.10)
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Where  is a constant to be determined by comparing the coefficients of lowest power of x – x0 on
both sides subjected to the condition that a0  0. This generally provides a quadratic equation in ,
providing two values of  and is known as the indicial equation. The method of solution is similar to that
for an ordinary point except that the values of  obtained using the indicial equation, sometimes also
called characteristic equation, are also substituted back in the solution of equation (2.10) to obtain two
different solutions.

Example 2.7.  Check whether Frobenius method can be applied or not to the following equation.

2

2 3
5d y y

dx x
= 0 ...(2.11)

Solution : Comparing the given equation to equation (1.7) one gets

P (x) = 0,  Q (x) = 3
5
x



Hence x = 0 is not an analytical point. Thus to check the nature of singularity consider

2
0

Lim ( 0) Q( )
x

x x


 = 2
30 0

5 5Lim Lim
x x

x
xx 

      

Thus x = 0 is not a regular singularity, Hence Frobenius method could not be applied to solve
differential equation (2.11)

Example 2.8.  Solve in series the following differential equation

2
2 2

2
)2 (1

d y dy
x x x y

dxdx
   = 0 ...(2.12)

Solution : The given equation can be rewritten as

2 2

2 2
(11

2
)d y dy x

y
x dxdx x


  = 0

Such that 1P ( )
2

x
x

    and 
2

2
1

( )
(

Q
)x

x
x


  becomes infinite at x = 0 making it a singular point.

The next step is to check the nature of singularity using the relations

0
0( )lim P( )

x x
x x x




and                                                            
0

2
0lim ( ) Q ( )

x x
x x x




for the given equation. Thus

0
1lim ( 0)

2x
x

x
  = – 1 = Finite
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and
2

2
20

1
lim ( 0)

( )
x

x
x

x


 = 1 = Finite

Hence x = 0 is a regular singular point and thus the equation can be solved by using Frobenius
method. The general solution to the given equation (2.12) will be considered as

y =
0

n
n

n
a x







So that y = 1

0
( ) n

n
n

a n x







and y = 2

0
( )( 1) n

n
n

a n n x





   

Substituting the values of y, y, y in equation (2.12), one can obtain

    2 2 1

0 0
2 1 n n

n n
n n

x a n n x x a n x
 

 

 
        2

0
1 0n

n
n

x a x





  

Or        2

0 0 0 0
2 1 0n n n n

n n n n
n n n n

a n n x a n x a x a x
   

   

   
          

Or          2

0 0
2 1 1 n n

n n
n n

a n n n x a x
 

 

 
          = 0

Or        2

0 0
2 1 1 1 n n

n n
n n

a n n x a x
 

 

 
         = 0

Or      2

0 0
2 2 3 1 n n

n n
n n

a n n x a x
 

 

 
        = 0

Or      2

0 0
2 1 1 n n

n n
n n

a n n x a x
 

 

 
       = 0

Equating the coefficients of lowest power of x, i.e., x on both sides one can obtain

a0 (2 – 1) ( – 1) = 0

As a0  0, hence (2 – 1) ( – 1) = 0, which is an indicial equation as explained in previous section
and provides the value of  as

 = 11 or
2

Comparing the coefficients of x + 1, one can obtain

a1 (2 (1 + ) – 1) (1 +  – 1) = 0

Or a1  (2 + 1) = 0
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a1 should be equal to zero as 1= 1 or
2

  and hence  (2 + 1) can’t be zero. Equating the coefficients

of xn + , the following recurrence relation could be observed

    2

0 0
2 1 1 n n

n n
n n

a n n x a x
 

 

 
       = 0

Or an =
  

2

2 2 1 1
na

n n


     
...(2.13)

Since a1 is zero, hence a3 = a5 = a7 = ... = 0, find the values of even ans, substitute the values of
n = 2, 4, 6, .....  in equation (2.13)

a2 = 0
1

(2 3)( 1)
a

 

a4 = 2 0
1 1

(2 7 )( 3) (2 7)(2 3)( 1)( 3)
a a

      

a6 = 4 0
1 1

(2 11)( 5) (2 11) (2 7)(2 3)( 1)( 3)( 5)
a a

        

a2n = 0
1

(2 4 1)...( 2 11)(2 7)(2 3)( 1)( 3)( 5)...( 2 1)
a

n n         

When  = 1, the expression of a2n reduces to

a2n =    0 0
1 1

4 1 13.9.5.2.4.6 2 2 ! 4 1 13.9.5n
a a

n n n n


    

When 1
2

  , the expression of a2n reduces to

a2n =  0 0 0
1 1 1

3 7 4 1 3.7.11 4 111 2 !3.7.11 4 14 12.8.4. . . 4 !
2 2 2 2 2

nn
n

a a a
n n n nn n

   
     

[The coefficient of expansion is different from a0 and hence is considered as a0]
So that the generalized solution of equation (2.12) could be written as

y =
 

122 1 20 0
0 0

1 1'
2 ! 4 1 13.9.5 2 !3.7.11 4 1

nn
n n

n n
a x a x

n n n n

  

 


   
 

    Quick Review
* Working steps for Frobenius method of solution

1. Consider y = 
0

n
n

n
a x





  and then find y and y.

2.  Equate the co-efficient of lowest power of x to find 
3.  Equate the co-efficient of xn+ to find the an's for the two values of .
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Example 2.9.  Discuss whether two Frobenius series solutions exist or not for the given differential
equation.

2x2y + x (x + 1)y – (cos x) y = 0 ...(2.14)

Solution : The Frobenius solutions exists for given differential equation if the difference between the
roots r1 and r2 of the quadric equation

r2 + (p (0) – 1) r + q (0) = 0 ...(2.15)

is non-zero i.e., r1 – r2  0,  here 
2

2 2
2

d yr x
dx

 , xdyr dx  and 1 dy
dx .

The given eqn. (2.14) could be put in the r form by dividing it with 2 such that

2 ( 1) (cos )
2 2

x xx y xy y   = 0

with p(x) = 
1

2
x 

 and q(x) = cos
2

x  such that 
1(0) 2p  and 

1(0) ,2q   so that eqn. (2.15) becomes

 2 1 112 2r r   = 0

or 2 1 1
2 2r r  = 0

or 2r2 – r – 1 = 0

or (2r + 1) (r – 1) = 0

or r = 1, 
1

2


so that r1  –  r2 =  1 31 0
2 2

   

Hence two Frobenius series solutions for the given equation exist.

Example 2.10.  Solve the differential equation

5x2y + x (x + 1) y – y = 0 ...(2.16)

using Frobenius method.

Solution : The given equation can be rewritten as

2

2 2
1 1

5 5
d y x dy yx dxdx x

  = 0

such that P (x) = 
1

5
x

x


 and 2
1Q( )

5
x

x
   becomes infinite at x = 0 making it a singular point. The

next step is to check the nature of singularity using the relations

lenovo
Highlight
i think this should be 1 = y
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0
0lim ( )P( )

x x
x x x


 =

0 0

1 1 1lim ( 0) lim
5 5 5x x

x xx
x 

    = finite

and
0

2
0lim ( ) Q( )

x x
x x x


 = 2

20

1 1lim ( 0) finite
55x

x
x

  

Since the two limits are finite hence the differential equation (2.14) has x = 0 as a regular singular
point and thus could be solved using Frobenius method with

y =
0

n
n

n
a x







y = 1

0
( ) n

n
n

a n x





 

y =
2

0
( )( 1) n

n
n

a n n x





   

Such that eqn. (2.14) could be rewritten as

2 2

0
5 ( ) ( 1) n

n
n

x a n n x





    1

0 0
( 1) ( ) 0n n

n n
n n

x x a n x a x
 

 

 
      

or  5 1

0 0
( ) ( 1) ( )n n

n n
n n

a n n x a n x
 

 

 
       

0 0
( ) n n

n n
n n

a n x a x
 

 

 
      = 0

or  1

0 0
[5( )( 1) ( ) 1] ( ) 0n n

n n
n n

n n n a x a n x
 

 

 
            

or  1

0 0
[( 1) (5( ) 1)] ( ) 0n n

n n
n n

n n a x a n x
 

 

 
        

or  1

0 0
( 1) (5 5 1) ( ) 0n n

n n
n n

n n a x n a x
 

 

 
          

Comparing the coefficients of xn +  on both sides one gets
(n +  – 1) (5n + 5 + 1) an + (n +  – 1) an–1= 0

or an = 1 1
( 1) 1

( 1) (5 5 1) 5 5 1n n
n a a

n n n 
  

      
Comparing the coefficients of x, one gets

( – 1) (5 + 1) a0 = 0
as a0  0 Hence ( – 1) (5 + 1) = 0
  = 1, –1/5
Comparing the coefficients of x+1 one gets

 (5 + 6) a1 +  a0 = 0
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or a1 = – 0
5 6

a


a2 =
2

0
1

( 1)1
5 11 (5 6) (5 11)

a
a


 

   

a3 =
3

0
2

( 1)1
5 15 (5 6) (5 11) (5 16)

a
a

 
   



an = 0( 1)
(5 6)(5 11) (5 16) .... (5 5 1)

na
n


    

for  = 1,  an becomes

an = 0( 1)
11.16.21....(5 6)

na
n




and for 
1
5 na    becomes

an = 0 0 0( 1) ( 1) ( 1)
5.10.15.....5 5 (1.2.3.... ) 5 !

n n n

n n
a a a

n n n

    
 

So that the solutions to eqn. (2.14) is given as

y =
1

10 0 5

0 0

( 1) ( 1)
11.16.21.....5 6 5 !

n n nn
n

n n

a a
x x

n n

  

 

 


 

or y =  1 1/50

0 0

( 1) 1
11.16.21.....5 6 ! 5

n n
n

n n

a xx xn n

 
 

 

 
 

or y = 1 1/5 /50

0

( 1)
11.16.21.....5 6

n
n x

n

a
x x e

n


  







0

)
!

n
x

n

xe
n






 
 

  


3. LEGENDRE’S DIFFERENTIAL EQUATION AND IT’S SOLUTION
Legendre's  differential equation is a particular 2nd order linear differential equation which has a wide

application in different branches of physics.
The differential equation

2
2

2
(1 2 1) ( )

d y dy
x x l l y

dxdx
    = 0 ...(3.1)

is called Legendre’s equation of lth order and its solutions are called Legendre’s Polynomials. The equation
is of considerable importance in solving the spherical harmonics in quantum mechanics, nuclear physics,
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etc. The equation can be rewritten as
2

2 2 2(

( 1)2
(1 ) 1 )

d y dy l lx y
dxdx x x


 

 
= 0

Such that 
2

(
( )

2P )
1

xx
x

 


  and 
2

( 1)
Q( )

(1 )

l l
x

x





 becomes infinite at x = ± 1 making it a singular

point. The next step is to check the nature of singularity using the relations

0
0( )lim P( )

x x
x x x




and
0

2
0(lim ( )) Q

x x
x x x




for Legendre’s equation. Thus

  21
2lim 1

(1 )x
xx
x


 = 1 = Finite

and 2
21

( 1)
lim ( 1)

1x

l l
x

x





= 0 = Finite

Hence x = ± 1 is a regular singular point and thus the equation can be solved using Frobenius method
in series of ascending or descending powers of x. However the solution in descending powers of x is
more useful and hence the Legendre’s equation will be solved in descending powers of x in this chapter.
The general solution of equation (3.1) will be considered as

y =
0

n
n

n
a x







So that y = 1

0
( ) n

n
n

a n x


 


 

and y = 2

0
( )( 1) n

n
n

a n n x


 


    

Substituting the values of y, y, y in equation (3.1), one can obtain

2 2 1

0 0 0
(1 ) ( )( 1) 2 ( ) ( 1)n n n

n n n
n n n

x a n n x x a n x l l a x
  

    

  
              = 0

Or     
2

0 0
( )( 1) ( )( 1) 2n n

n n
n n

a n n x a n n x
 

  

 
            

0
( ) n

n
n

a n x





 

0
( 1) n

n
n

l l a x





    = 0

Or           2

0 0
( )( 1) 1 2 1 0n n

n n
n n

a n n x a n n n l l x
 

  

 
                 

Or              2

0 0
1 1 1 0n n

n n
n n

a n n x a n n l l x
 

  

 
              
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Or            2

0 0
1 1 0n n

n n
n n

a n n x a n l n l x
 

  

 
              

Equating the coefficients of highest power of  x, i.e. x (by substituting n = 0 in second term of the
above eqn.) on both sides one can obtain

a0 {( – l) ( + l + 1)} = 0
As a0  0, hence ( – l) ( + l + 1) = 0, which is an indicial equation and provides the value of  as

 = l  or – l – 1
Comparing the coefficients of x–1, one can obtain

a1 {( – 1 – l) ( + l)} = 0
a1 should be equal to zero as the above equation provides  = l + 1 or – l, which is not possible as

the values  have already been found. Equating the coefficients of x–n, the following recurrence relation
could be observed

an–2 ( – n + 2) ( – n + 1) – an ( – n l) ( – n + l + 1)) = 0

Or          
  
  

  
  2 2

2 1 2 1

1 1
n n n

n n n n
a a a

n l n l l n l n
 

           
  

             ...(3.2)

Since a1 is zero, hence a3 = a5 = a7 = .... = 0,  to find the values of even ans,  substitute the values of
n = 2, 4, 6 ..... in equation (3.2)

a2 = 0
( 1)

( 2 )( 1)
a

l l
 

  

a4 = 2
2 0

( 2)( 3) ( 1) ( 2)( 3)
( 1)

( 4 ) ( 3) ( 4 )( 2 )( 1)( 3)
a a

l l l l l l
      

 
         

a6 = 3
4 0

( 4)( 5) ( 1)( 2)( 3)( 4)( 5)
( 1)

( 6 )( 5) ( 6 )( 4 )( 2 )( 1)( 3) ( 5)
a a

l l l l l l l l
         

 
           

a2n = 0
( 1)( 2)( 3)....( 2 1)

( 1)
( 2 )...( 4 )( 2 )( 1)( 3)...( 2 1)

n n
a

l n l l l l l n
     


         

When  = l, the expression of a2n redues to

a2n = 0
( 1)( 2) ( 3)....( 2 1)

( 1)
(2 )...4.2. (2 1)(2 3)....(2 2 1)

n l l l l l n
a

n l l l n
    


   

= 0
( 1)( 2)( 3)....( 2 1)

( 1)
2 !(2 1)(2 3)....(2 2 1)

n
n
l l l l l n

a
n l l l n
    


   

When  = – l – 1, the expression of a2n reduces to

a2n = 0
( 1)( 2)( 3)( 4)...( 2 )

( 1)
(2 2 1)... ( 2 5)(2 3)2.4...2

n l l l l l n
a

l n l l n
    

 
   



56 MATHEMATICAL PHYSICS–II (Sem. III) Hons.

= 0
( 1)( 2)( 3)( 4)...( 2 )

2 !(2 3) (2 5)...(2 2 1)n
l l l l l n

a
n l l l n
    


   

[ 0a  is diffeent than a0]
So that the generalized solution of Legendre’s equation could be written as

 y   =   2
0

0

( 1)( 2)( 3)...( 2 1)
( 1)

2 !(2 1)(2 3)....( 2 2 1)
n l n

n
n

l l l l l n
a x

n l l l n






    


   


2 1
0

0

( 1)( 2)( 3) ( 4)...( 2 )
2 ! (2 3)(2 5)....( 2 2 1)

l n
n

n

l l l l l n
a x

n l l l n


  



    
 

   
  ...(3.3)

or y = a0 Pl (x) + a0 Ql (x)
Here Pl (x) is known as Legendre's function of first kind and Ql (x) is Legendre's function of second

kind.

    Quick Review
* Working steps for solution of Legendre’s differential equation

1. Consider y = 
0

n
n

n
a x





  and find y and y.

2.  Equate the highest power of x to find the values of 
3.  Equate the co-efficient of x–n to find the an's for the two values of .

3.1. LEGENDRE’S POLYNOMIALS PL (X)
Legendre’s polynomials Pl (x) are the polynomials satisfying the Legendre’s differential equation. The

first part of equation (3.3) is known as Legendre’s polynomials of first kind and more generally Legendre
polynomials and a few of these polynomials are

                                             

   
 
   
   
   

0

1

2
2

3
3

4 2
4

P 1 1,P 1

P

1P 3 1
2
1P 5 3
2
1P 35 30 3
8

l x

x x

x x

x x x

x x x

 



  



  

  


...(3.4)

These polynomials have been derived using generating function of Legendre’s function in next
sections.

3.2. RODRIGUE’S FORMULA
The result

Pl (x) = 21 ( 1)
2 !

l l
l l

d x
l dx

 ...(3.5)

is known as Rodrigue’s formula to represent Legendre’s polynomials.

lenovo
Highlight
different
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To prove Rodrigue’s formula, consider
F = (x2 – 1)l ...(3.6)

Differentiating expression (3.6) with respect to x, one can obtain

Fd
dx = 2xl (x2 – 1)l–1

Or  2 F
1

d
x

dx
 = 2xl (x2 – 1)l–1 (x2 – 1) = 2xl (x2 – 1)l

Or  2 F
1

d
x

dx
 = 2xl F ...(3.7)

Differentiating equation (3.7) (l + 1) times using Libnitz formula, obtain

       
2 1 12

2 1 1
F F F F1 2 1 1 2 2 1

l l l l l

l l l l l
d F d d d dx x l l l xl l l
dx dx dx dx dx

  

  
       

Or          
2 1 12

2 1 1
F F F F1 2 1 1 2 2 1 0

l l l l l

l l l l l
d F d d d dx x l l l xl l l
dx dx dx dx dx

  

  
        

Or         
2 12

2 1
F F F1 2 1 0

l l l

l l l
d d dx x l l
dx dx dx

 

 
    

Or                   2 F F F1 2 1 0
l l l l

l l l l
d d d d dx x l l

dxdx dx dx dx

   
          

Thus                                           
2( 1)F l ll

l l
d xd

dx dx

   
       [From equation (3.6)]

is a solution to Legendre’s differential equation. Pl (x) is also a solution to Legendre’s differential equation,
hence

Pl (x) =
2( 1)

C
l l

l
d x

dx

 
 
 

The constant of proportionality can be determined by evaluating 
2( 1)l l

l
d x

dx

 
 




 
 at x = 1

2( 1)l l

l
d x

dx


=    1 1
l l l
l

d x x
dx

 

Using Libnitz formula to differentiate LHS one can have
2( 1)l l

l
d x

dx


=
1

1
( 1) ( 1) ( 1) ( 1)

l ll l l l
l l

d d dx x l x x
dxdx dx




    

2 2 1

2 2 1
( 1) ( 1) ( 1) .... ( 1) ( 1)

l ll l l l
l l

d d d dl l x x l x x
dxdx dx dx

 

 
        ( 1) ( 1)

ll l
l

dx x
dx

  
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2( 1)l l

l
d x

dx


= l! (x + 1)l + l2 (x + 1) l–1 !
2
l  (x – 1) + l2 (l – 1)2 (x + 1)l–2 2! ( 1)

3!
l x 

2 1 1 !... ( 1)
2
ll x    (x + 1) + (x – 1)ll!

Substituting x = 1, one can have

2( 1)l l

l
d x

dx


= l! (1 + 1)l + l2 (1 + 1) l–1 !
2
l  (1 – 1) + l2 (l – 1)2 (1 + 1)l–2

2 2 1 1! !(1 1) ... (1 1)
3! 2
l ll      (1 + 1) + (1 – 1)ll!

Or
2

1

1)(l l

l
x

d x
dx 


= 2l l!

Hence Pl (x) =
2( 1)1

2 !

l l

l l
d x

l dx

 
 
 

Additional Information (Libnitz Formula of nth order differentiation)
The Leibniz formula reveals the nth order differentiation of the product of two functions. Assume

that u(x) and v(x) are the functions of x, having derivatives up to nth order. The first order differentiation
of the function is given as

( ) ( )du x v x
dx =

( ) ( )
( ) ( )

dv x du x
u x v x

dx dx


The second differentiation of the function yields

2

2
( ) ( )d u x v x
dx

=
2 2

2 2
( ) ( ) ( ) ( )( ) ( ) 2d v x d u x dv x du xu x v x

dx dxdx dx
 

Likewise the third derivative is given as

3

3
( ) ( )d u x v x
dx

=
3 3 2

3 3 2
( ) ( ) ( ) ( )( ) ( ) 3d v x d u x d v x du xu x v x

dxdx dx dx
 

2

2
( )3 d u x dv

dxdx


Proceeding in a similar way, one may obtain

( ) ( )n

n
d u x v x

dx
=

1 2

1 2
( ) ( ) ( ) ( )

( ) ( 1)
n n

n n
d v x du x d v x d u x

u x n n n
dxdx dx dx




   .

2

2
( )n

n
d v x

dx




 ..

1

1
( ) ( ) ( )

... ( )
n n

n n
d u x dv x d u x

n v x
dxdx dx




 

This formula is called Libnitz Formula



FROBENIUS METHOD AND SPECIAL FUNCTIONS 59

Example 3.1.  Express f (x) = x3 – 5x2 + x + 2 in terms of Legendre’s polynomials

Solution : The highest power in the expression is 3, used in P3 (x), thus

x3 = 3
3P

5
(2 )

5
x x [P3(x) = 

1
2  (5x3 – 3x)]

So     f (x)   =   x3 – 5x2 + x + 2 = 3
3P

5
(2 )

5
x x – 5x2 + x + 2  = 2

3
2 P ) 5 2
5

8(
5

x x x  

                    = 3 2 3 2
8 10 82 2 1 2 1P ( ) 5 P ( ) 2 P ( ) P ( )

5 3 3 5 5 3 5 3
x x x x x x         

[Here P2 (x) = 
1
2  (3x2 – 1)]

                   3 2 1 0
10 82 1P ( ) P ( ) P ( ) P ( )

5 3 5 3
x x x x   

3.3. GENERATING FUNCTION OF LEGENDRE’S POLYNOMIALS
Generating functions are useful mathematical tools to represent an infinite sequence. It is a single

function which encodes the sequence. The generating function of Legendre’s polynomial is

g (x, t) =
2 0

1 P ( ) ,( )
1 2

l
l

l
x t t l

xt t




 

 
 ...(3.8)

Thus Pl (x) is a coefficient of tl in the expansion of g (x, t). To prove it consider the binomial
expansion of  g (x, t)

(1 – 2xt + t2)–1/2 = [1 – (2xt – t2)]–1/2 = 2 2 2 2 3(3 511 (2 ) (2 ) 2 )
2 8 16

xt t xt t xt t      

Or  2 1/2(1 2 )xt t    = 
2 2 2 4 3 3 3 63 3 3 51
2 2 8 2 2

txt x t t xt x t t       2 4 515 15
4 8

x t xt  

Or 2 1/2(1 2 )xt t    = 2 2 2 3 4 2 41 1 11 (3 1) (5 3 ) (35 30 3)
2 2 8

xt x t x x t x x t        

Or  2 1/2(1 2 )xt t    = 2 2 2 3 4 2 41 1 11 (3 1) (5 3 ) (35 30 3)
2 2 8

xt x t x x t x x t        

Or  2 1/2(1 2 )xt t    =    2 3 4
0 1 2 3 4

0
P ( ) P ( ) P P P ( ) P ( ) l

l
l

x x t x t x t x t x t



    

Example 3.2.  Show that Pl (1) = 1

Solution : Consider the generating function of Pl (x) and let x = 1, such that

2
1

1 2 t t 
=

0
P (1) l

l
l

t





Or (1 – t)–1 =
0

P (1) l
l

l
t





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Or 1 + t + t2 + t3 + ... =
0

P (1) l
l

l
t






Or
0

l

l
t




 =

0
P (1) l

l
l

t





Comparing both sides, one gets
Pl (1) = 1

Example 3.3.  Show that Pl (– x) = (–1)l Pl (x)
Solution : Consider the generating function of Pl (x) and changing t to –t, equation (3.8) can be

rewritten as

2
1

1 2 xt t 
=

0
P ( ) ( ) l

l
l

x t






Or it can be rearranged as

2
1

1 2( )x t t  
=

0
( 1) P )(l l

l
l

x t





Or
0

P ( ) l
l

l
x t




 =

0
( 1) P ( )l l

l
l

x t





Comparing the two sides one may get
Pl (– x) = (–1)l Pl (x)

Example 3.4.  Show that P0 (x) = 1
Solution : Using the generating function relation (3.8) and substituting l = 0, one gets

2
1

1 2 xt t 
= P0 (x) t0

Expanding the left hand side and comparing the coefficients of t0 one gets

P0 (x) t0 = 
2 2 2 4 3 3 3 6 2 4 53 3 3 5 15 151
2 2 8 2 2 4 8

txt x t t xt x t t x t xt         

Comparing the coefficient of t0 on both sides, one gets
    P0 (x) = 1

3.4. RECURRENCE RELATIONS
Various recurrence relations of the Legendre polynomials can be obtained from the generating function

(1 + 2xt + t2)–1/2.  The recurrence relations of Legendre’s polynomials along with their establishment from
the generating function have been discussed one by one

(a) (l + 1) Pl+1 (x) = (2l + 1) xPl (x) – l Pl–1 (x)
To prove it consider the differentiation of both sides of equation (3.8) with respect to t, such that

2 1/2(1 2 )d xt t
dt

  =
0

P ( ) l
l

l

d x t
dt





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Or 2 3/21 ( 2 2 ) 1
2

( 2 )x t xt t      = 1

0
P ( ) l

l
l

l x t







Or (x – t) (1 – 2xt + t2)–3/2 = 1

0
P ( ) l

l
l

l x t





 ...(3.9)

Multiplying the two sides with (1 – 2xt + t2), one can get

(x – t) (1 – 2xt + t2)–1/2 = 2 1

0
(1 2 P ( )) l

l
l

xt t l x t





  

Or
0

( ) P ( ) l
l

l
x t x t




  = 1 1

0 0 0
P ( ) 2 P ( ) P ( )l l l

l l l
l l l

l x t x l x t l x t
  

 

  
   

Or 1

0 0
P ( ) P ( )l l

l l
l l

x x t x t
 



 
  = 1 1

0 0 0
P ( ) P ( ) P ( )2l l l

l l l
l l l

l x t l x t lx x t
  

 

  
   

Equating the coefficients of tl on both sides, one can get

xPl (x) – Pl–1 (x) = (l + 1) Pl + 1 (x) – 2xl Pl (x) + (l – 1) Pl – 1 (x)

Rearranging the terms one will be able to achieve the result

(l + 1) Pl + 1 (x) = (2l + 1) xPl (x) – lPl – 1 (x) ...(3.10)

(b) Pl + 1 (x) = Pl(x) + 2xPl (x) – Pl – 1 (x)

To prove it consider the differentiation of both sides of equation (3.8) with respect to x, such that

2 1/2(1 2 )d xt t
dx

  =
0

P ( ) l
l

l

d x t
dx






t (1 – 2xt + t2)–3/2 =
0

P ( ) l
l

l
x t





 ...(3.11)

Multiplying the two sides with (1 – 2xt + t2), one can get

t (1 – 2xt + t2)–1/2 = (1 – 2xt + t2) 
0

P ( ) l
l

l
x t






1

0
P ( ) l

l
l

x t





 = 1 2

0 0 0
P ( ) 2 P ( ) P ( )l l l

l l l
l l l

x t x x t x t
  

 

  
     

Comparing the coefficients of tl on both sides one may get

Pl–1 (x) = Pl (x) – 2xPl – 1 (x) + Pl – 2 (x)

Rearranging the terms one will be able to achieve the result

Pl (x) = Pl – 1 (x) + 2 xPl – 1 (x) – Pl – 2 (x)
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Replacing l by l + 1, the required recurrence relation can be established as
Pl + 1 (x) = Pl (x) + 2xPl (x) – Pl – 1 (x) ...(3.12)

(c) l Pl (x) = xPl (x) – Pl – 1 (x)
Dividing equation (3.9) with (3.11), one can achieve

( )x t
t


=
1

0

0

P ( )

P ( )

l
ll

l
ll

l x t

x t

 


 




Or
0

( ) P ( ) l
l

l
x t x t




  = 1

0
P ( ) l

l
l

t l x t







Or 1

0 0
P ( ) P ( )l l

l l
l l

x x t x t
 



 
   =

0
P ( ) l

l
l

l x t





Comparing the coefficients of tl on both sides one may get
xPl (x) – P(l–1) (x) = l Pl (x) ...(3.13)

(d) xPl–1 (x) – l Pl–1 (x) = Pl (x)
Differentiating recurrence relation (3.10) with respect to x results in

(l + 1)P(l + 1) (x) = (2l + 1) xPl (x) + (2l + 1) Pl (x) – l Pl–1 (x)
Substituting the value of P(l – 1) (x) from recurrence relation b in the above equation, one can

achieve
(l  + 1) Pl + 1 (x) = (2l + 1) xPl (x) + (2l + 1) Pl (x) – l (Pl (x) + 2xPl (x) – Pl + 1 (x))

Or (l + 1) Pl + 1 (x) = (2l + 1) xPl (x) + (2l + 1) Pl (x) – l Pl (x) – 2xl Pl (x) + l Pl + 1 (x)
Or Pl+1 (x) = xPl (x) + (l + 1) Pl (x)
Replacing l by l – 1 and rearranging the terms the required recurrence relation can be established as

xPl–1 (x) – l Pl – 1 (x) = Pl (x) ...(3.14)
(e) (x2 – 1) Pl (x) = xlPl (x) – l Pl – 1 (x)
Multiplying recurrence relation (3.13) with x one can obtain

x2 Pl (x) – x Pl–1 (x) = xl Pl (x) ...(3.15)
Substituting the value of x Pl – 1(x) from recurrence relation (3.14) in equation (3.15), the equation can

be rewritten as
x2Pl (x) – l Pl – 1 (x) – Pl (x) = xl Pl (x)

Rearranging the terms one can obtain
(x2 – 1) Pl (x) = xl Pl (x) – l Pl – 1 (x)

Example 3.5.  Show that P1 (x) = x
Solution : Using the recurrence relation (3.10) and substituting l = 0, one gets

P1 (x) = xP0 (x) – 0.P–1 (x)
Substituting P0 (x) = 1, one gets

P1 (x) = x
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Example 3.6. Derive the expression of P2 (x) using recurrence relation (3.10)
Solution: Using the recurrence relation (3.10) and substituting l = 1, one gets

2P2 (x) = 3x P1 (x) – P0 (x)
Substituting P0 (x) = 1, and P1 (x) = x one gets

2P2 (x) = 3x2 – 1

Or P2 (x) = 23
2

x  1
2

3.5. ORTHOGONALITY OF LEGENDRE’S POLYNOMIALS
The Legendre’s polynomials satisfy the following orthogonality relation

1

1
P ( ) P ( )l mx x dx


 = 2

2 1 lml


 ...(3.16)

Here lm is a kronecker delta function and is one if the two indices, i.e. l and m are same and is zero if
the two indices are not same, i.e. l  m

This relation can be proved as follows
Pl (x) and Pm (x) are the solutions of the Legendre’s equations given as

(1 – x2) 
2

2
P ( ) P ( )

2 ( 1)P ( )l l
l

d x d x
x l l x

dxdx
    = 0 ...(3.17)

(1 – x2) 
2

2
P ( )P ( )

2 ( 1)P ( )mm
m

d xd x
x m m x

dxdx
    = 0 ...(3.18)

Multiplying equation (3.17) with Pm (x) and equation (3.18) with Pl (x) and subtracting, one can
achieve the following result

2 2
2

2 2
P ( ) P ( )P ( ) P ( )

(1 ) P ( ) P ( ) 2 P ( ) P ( )l ml m
m l m l

d x d xd x d x
x x x x x x

dx dxdx dx

   
        

+ (l (l + 1) – m (m + 1)) Pl (x) Pm (x) = 0

2 2P ( ) P ( )
P ( )(1 ) P ( )(1 )l l

m m
d x d xd x x x x

dx dx dx
 

    
 = (m (m + 1) – l (l + 1)) Pl (x) Pm (x)

Integrating the above equation with respect to x between the limits –1 to 1, one can obtain
1

2 2

1

P ( ) P ( )
P ( )(1 ) P ( )(1 )l l

m m
d x d x

x x x x
dx dx


    = 

1

1
( ( 1) ( 1) P ( )P ( )l mm m l l x x dx



   

It results in

(m (m + 1) – l (l + 1)) 
1

1
P ( )P ( )l mx x dx


 = 0
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1

1
( )( 1) P ( )P ( )l mm l m l x x dx



    = 0

Thus there are two conclusions from the above relation, one is either (m – l) (m + l + 1) is zero or
1

1
P ( ) P ( )l mx x dx

  is zero, that leads to the conclusion that,  
1

1
P ( )P ( ) 0l mx x dx


 , when l  m, the

second option m = – (l + 1) is not possible as m cannot be negative. When l = m, the relation can be

proved using Rodrigue’s formula (3.5) by considering the integral 
1 2
1
P ( )l x dx

  as

1
2

1
P ( )l x dx


 =

1 2 12

2
1

( 1)( 1)1
( 2 !)

ll l

l l l
d xd x

dx
l dx dx

   
  

   


Integrating by parts the RHS, one can obtain

1 2 2

2
1

( 1) ( 1)1
( 2 !)

l l l l

l l l
d x d x

dx
l dx dx

    
   
   
  = 

1
1 2 2

2 1
1

( 1) ( 1)1
(2 !)

l l l l

l l l
d x d x

l dx dx






         
     

– 
1 1 2 1

1
( 1)

l l
l

d x
dx

  




1 2

1
( 1)l l

l
d x

dx
dx







The first term on the RHS of above equation is zero as

2( 1)l l

l
d x

dx


= l! (x + 1)l + l 2 (x + 1)l – 1 2 2! ( 1) ( 1)
2
l x l l  

2 2!( 1) ( 1) ....
3!

l lx x   2 1 !( 1) ( 1) ( 1) ! 0 1
2

l lll x x x l f or x       

Thus the above integral could be rewritten as

1 2 2

2
1

( 1) ( 1)1
(2 !)

l l l l

l l l
d x d x

dx
l dx dx





 
 =

1 1 2 1 2

2 1 1
1

( 1) ( 1)1
(2 !)

l l l l

l l l
d x d x

dx
l dx dx

 

 


          
     


Repeating the process l times, one can obtain

1 2 2

2 2
1

( 1) ( 1) ( 1)1
( 2 !) ( 2 !)

l l l l l

l l l l
d x d x

dx
l dx dx l

     
   

   


1 2 2
2

2
1

( 1)
( 1)

l l
l

l
d x

x dx
dx

     
   
 ...(3.19)

Here 
2 2

2
( 1)l l

l
d x

dx

 
 
 

 can be solved using Libnitz formula as
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2 2

2
( 1)l l

l
d x

dx

 
 
 

 = 
2 2 1

2 2 1
( 1) ( 1) 2 ( 1) ( 1)

l ll l l l
l l

d d dx x l x x
dxdx dx




    

2

2
2 (2 1) ( 1) ldl l x

dx
  

2 2 2 1

2 2 2 1
(2 )!

( 1) .... ( 1) ( 1) ....
! !

l ll l l
l l

ld d dx x x
l l dxdx dx

 

 
     

2 1 2

2 1 2
( 1) ( 1) ( 1) ( 1)

l ll l l l
l l

d d dl x x x x
dxdx dx




     

or
2 2

2
( 1)l l

l
d x

dx

 
 
 

=
(2 )!

! ! (2 )!
! !
l

l l l
l l



So that equation (3.19) becomes

1 2 2

2
1

( 1) ( 1)1
( 2 !)

l l l l

l l l
d x d x

dx
l dx dx

    
   
   
  =  

1
2

2
1

( 1) (2 )!
( 1)

(2 !)

l
l

l
l

x dx
l 

   
  
 ...(3.20)

The integral  
1

2

1
( 1) lx dx





  could be solved as

1
2

1
( 1) lx dx



 =
1

2

1
( 1) ( 1)l lx x dx



  =

1 11
1 1

11

( 1)
( 1) . ( 1) ( 1)

1 1

l
l l lx lx x x dx

l l


 




   

  

=
1

1 1

1
( 1) ( 1)

1
l ll x x dx

l
 



  
 

Repeating the procedure l times, one will achieve the following result

1
2

1
( 1) lx dx



 =
1

2

1

!( 1) ( 1)
( 1)( 2)( 3)...2

l ll x dx
l l l l



 
   

=
12 12

1

( 1)( !)
( 1)

(2 )! 2 1

l
l xl

l l






 



=
2 2 1( !) 2

( 1)
(2 1) !

l
l l

l




 ...(3.21)
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Substituting the value of integral in equation (3.20), the equation can be written as

1 2 2

2
1

( 1) ( 1)1
( 2 !)

l l l l

l l l
d x d x

dx
l dx dx

    
   
   
  = 

2 2 1

2
( 1) (2 )! ( !) 2 2( 1)

( 2 1)! 2 1( 2 !)

l l
l

l
l l

l ll

 
  

   

Example 3.7.  Show that

1

1
P ( )l

mx x dx

 = 0 f or l < m ...(3.22)

Solution :
1

1
P ( )l

mx x dx

 =

1 2

1

( 1)1
2 !

m m
l

m m
d x

x dx
m dx

 
 
 



=  

1 11 2 1 2
1

1 1
11

( 1) ( 1)1
2 !

m m m m
l l

m m m
d x d x

x l x dx
m dx dx


 


 



              


The first term on RHS of the above equation is zero due to the presence of (x2 – 1)m in each term of
the derivative, hence

1 2

1

( 1)1
2 !

m m
l

m m
d x

x dx
m dx

 
 
 

 =
1 1 2

1
1

1

( 1)

2 !

m m
l

m m
d xl x dx

m dx







 
 
 



If the procedure is repeated l + 1 times, the term xl will vanish and hence the integral will become zero
for l < m.

Example 3.8.  Show that

1

1
P ( )l

lx x dx

 =

2 1 22 ( !)
( 2 1)!

l l
l




...(3.23)

Solution :
1

1
P ( )l

lx x dx

 =

1 2

1

( 1)1
2 !

l l
l

l l
d x

x dx
l dx

 
 
 



=

1 1–1 2 1 2
1

–1 1
1–1

( 1) ( 1)1 –
2 !

l l l l
l l

l l l
d x d x

x l x dx
l dx dx









      
    

    
 



The first term on RHS of the above equation is zero due to the presence of (x2 – 1)l in each term of the
derivative, hence

1 2

1

( 1)1
2 !

l l
l

l l
d x

x dx
l dx

 
 
 

 =
1 1 2

1
1

1

( 1)

2 !

l l
l

l l
d xl x dx

l dx







 
 
 


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Repeating the procedure l times, one can achieve the result

1 2

1

( 1)1
2 !

l l
l

l l
d x

x dx
l dx

 
 
 

 =
1

2

1

( 1) !
( 1)

2 !

l
l

l
l

x dx
l 




Using the results of equation (3.20), the above integral becomes

1 2

1

( 1)1
2 !

l l
l

l l
d x

x dx
l dx

 
 
 

 =
2 1( !) 2

(2 1)!

ll
l





Example 3.9.  Evaluate
1

1
P ( ) P ( )l mx x x dx




Solution : From equation (3.10), one may have

1
(2 1)l  [(l + 1) Pl + 1 (x) + l Pl – 1 (x)] =  xPl (x)

So that the equation becomes

1

1
P ( )P ( )l mx x x dx


 =

1

1 1
1

1 [( 1)P ( ) P ( )] P ( )
(2 1) l l ml x l x x dx

l  


 
 

=
1 1

1 1
1 1

1 ( 1) P ( )P ( ) P ( )P ( )
(2 1) l m l ml x x dx l x x dx

l  
 

 
  

   
 

The integrals will become zero unless m = l ± 1, thus

1

1
P ( )P ( )l mx x x dx


 = 1 2 2( 1)

(2 1) 2( 1) 1 2( 1) 1
l l

l l l
 

       

  
1 22

(2 1) 2 3 2 1
l l

l l l
 

     

Example 3.10.  Prove that the Legendre's Polynomials can be represented by the definite integral

Pl (x) = 2

0

1 [ ( 1) cos ]lx x d


  
   ...(3.24)

Solution : To start with consider the defiinite integral

0
cos

d
a b




  =
2 2a b




  (if a > b) ...(3.25)
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Let a = 1 – xt and b = 2( 1)t x 
      so that a2 – b2 = (1 – xt)2 – t2 (x2 – 1)

= 1 – 2xt + x2t2 – t2 x2 + t2

= 1 – 2xt + t2

so that the integral given by equation (3.23) could be modified as

2
0 (1 ) ( 1) cos

d

xt t x




   
 =

21 2xt t



 

 (1 – 2xt + t2)–1/2 = 2
0 (1 ) ( 1) cos

d

xt t x




   


As (1 – 2xt + t2)–1/2 is the generating function of Legendre's polynomials hence using equation (3.8)
one gets

P ( ) l
l x t = 2

0 1 [ ( 1) cos ]

d

t x x




   


= 2 1

0
[1 { ( 1) cos }t x x d


    

P ( ) l
l x t = 1

0
(1 )z d


  ...(3.26)

Here z = 2{ ( 1) cos }t x x  

Eqn. (3.26) could be rewritten as

0
P ( ) l

l
l

x t



  = 2

0
(1 ..... )lz z z d



   

=
0 0

l

l
z d




 

= 2

0 0
( ( 1) cos )l l

l
t x x d




    

Comparing the coefficients of tl on both sides, one gets

 Pl (x) =
2

0
{ ( 1) cos }lx x d



   
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or  Pl (x) = 2

0

1 { ( 1) cos }lx x d


  
  

This integral is also known as Laplace's first definite integral.

Example 3.11.  Evaluate 
1

2 2

1
P ( )lx x dx






Solution :  To start with consider the recurrence relation

(l + 1) Pl+1 (x) = (2l + 1) x Pl (x) – l Pl–1 (x)

or (2l + 1)x Pl (x) = (l + 1) Pl + 1 (x) + l Pl–1 (x)

Squaring both sides and integrating both sides with respect to x between the limits –1 to + 1, one
gets

  
1

2 2 2

1
(2 1) P ( )ll x x dx





    =  
1 1

2 2 2 2
1 1

1 1
( 1) P ( ) P ( )l ll x dx l x dx

 

 
 

  
1

1 1
1

2 ( 1) P ( ) P ( )l ll l x x dx


 


  

Using the orthogonality relation of Legendre's polynomials given by equation (3.16) one gets

1
2 2 2

1
(2 1) P ( )ll x x dx





  = 2 22 2( 1) 0
2( 1) 1 2( 1) 1

l l
l l

  
   

=
2 22( 1) 2

2 3 2 1
l l
l l



 

or
1

2 2

1
P ( )lx x dx




 =

2 2

2 2
2( 1) 2

(2 1) (2 3) (2 1) (2 1)
l l

l l l l
 

   

Example 3.12.  Find the value of l if

1

1
P ( ) 2l x dx







Solution : From the result of example (3.23) one get

1

1
P ( )l

lx x dx



 =

2 1 22 ( !)
(2 1)!

l l
l





which will be 2 iff l = 0 as

2 1 22 ( !)
(2 1)!

l l
l



 =
1 22 (0!) 2

1!

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Hence 0 is the value of l for

1

1
P ( )l x dx




 = 2

Example 13.  Find the value of P2l + 1 (0).
Solution : Consider the generating function of Legendre's polynomials

2
2

0
P ( ) l

l
l

x t



 = (1 – 2xt + t2)–1/2

substituting x = 0, one gets

2
2

0
P (0) l

l
l

t



 = (1 + t2)–1/2

or 2
2

0
P (0) l

l
l

t



 = 2 2 2 2 3

1 1 1 1 11 1 21 2 2 2 2 21 ( ) ( ) ....
2 2! 3!

t t t
                 

   

2

1 1 1 11 2 ...... 1
2 2 2 2 ( )

!
n

n
t

n

                 


Comparing the coefficients of t2l+1 on both sides one gets
P2l + 1 (0) = 0

3.6. TRIGNOMETRIC REPRESENTATION OF LEGENDRE’S POLYNOMIALS
The Legendre’s polynomials can also be written in terms of trigonometric functions by substituting

x = cos , such that equation (3.5) becomes

Pl (cos )  = 
2 2(cos 1) sin1 1 1. ( 1) .

sin2 ! 2 !

ll l l l ll
l l l l

d dx d
dl d l d

                   

                  
2sin1 1

2 ! sin

l l

l l l
d

l d

     
...(3.27)

3.7. SECOND KIND OF LEGENDRE’S POLYNOMIALS Ql(x)
The second solution to Legendre’s differential equation, given by the second part of the equation

(3.3)

y = 2 1
0

0

( 1) ( 2) ( 3) ( 4)...( 2 )

2 !( 2 3) (2 5)...( 2 2 1)
l n

n
n

l l l l l n
a x

n l l l n


  



    


   


is known as second kind of Legendre’s polynomials and are denoted by Ql (x). The relation between
Pl (x) and Ql (x) is given as

lenovo
Highlight
trigonometric
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Ql (x) = 11 P ( ) ln
2 1l

xx
x




with Q0(x) = 1
11 ln as P ( ) 1

2 1
x x
x

 


and Q1 (x) = 1 1 0
11 P ( ) ln = P ( ) Q ( ) 1

2 1
xx x x
x

 


3.8. ASSOCIATED LEGENDRE’S POLYNOMIALS
The solution to associated Legendre’s differential equation

2
2

2 2
(1 ) 2 ( 1) 0

1

d y dy mx x l l y
dxdx x

 
      

 

And are given as

P ( )m
l x = 2 /2( 1) (1 ) P ( ) , 0

mm m
lm

dx x m
dx

 
    

...(3.28)

That can be extended for negative values of m by finding the proportionality between P ( )m
l x  and

P ( )m
l x  by substituting the value of Pl (x) from equation (3.5), so that equation (3.28) can be rewritten as

P ( )m
l x =

2 /2( 1) (1 )
( 1) ( 1)

2 !

m m l m l l
l l m

x d x x
l dx





  
    ...(3.29)

Differentiating equation (3.29) using Libnitz formula one gets

P ( )m
l x  = 

2 /2( 1) (1 )
( 1) ( 1) ( ) ( 1)

2 !

m m l ml m l l
l l m

x d dx x l m x
dxl dx




 
    

1

1
( 1)

l m l
l m

d x
dx

 

 
 

... C ( 1) ... C ( 1) ( 1) ...
m l ml m l l m l l

m lm l m
d d dx x x
dx dx dx

       

1

1
( ) ( 1) ( 1) ( 1) ( 1)

l m l ml l l l
l m l m

d d dl m x x x x
dxdx dx

  

  


       

In the above expression, the terms varying between m to l are non zero, therefore the above term can
be rewritten as

P ( )m
l x  = 

2 /2( 1) (1 ) ( )! ! !( 1) ( 1)
!( )! ( )! ( )!2 !

lm m
l r r m

l
r m

x l m l lx x
r l m r l r r ml

 



  
 

   

Replacing r = r – m, the above equation could be rewritten as

P ( )m
l x  = 

2 /2

0

( )!( 1) (1 ) !
( )!( )! ( )!2 !

l mm m

l
r

l mx l
r m l r l r ml





 
       !( 1) ( 1)

( )!
l r m lx x r

r
   


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Multiplying and dividing the above equation with (1 – x2)–m (l –m)! And rearranging the terms, one
gets

P ( )m
l x  = 

2 2 2( 1) (1 )
( 1) ( 1)

2 !

m
m

m m
l

x
x

l


 

 
( )!
( )!
l m
l m



0

( )! ! !( 1) ( 1)
( )!( )! ( )! ( )!

l m
l r m

r

l m l lx x r
r l r m l r r m


 




  

      

Or P ( )m
l x  =  

2 2

0

( 1) (1 ) ( )! ( )! !( 1)
( )! ( )!( )! ( )!2 !

m
l mm

m
l

r

x l m l m l
l m r l r m l rl

 



   


      ( 1) l rx  

! ( 1)
( )!

r ml x
r m




Or  P ( )m
l x  = 

2 2 ( )

0

( 1) (1 ) ( )!
( 1) C ( 1) ( 1)

( )!2 !

m
l mm r l m rm l m l l

rl r l m r
r

x l m d dx x
l ml dx dx

    
   



  
  

 

Or P ( )m
l x  = 

2 2 ( ) 2

0

( )! (1 )
( 1) ( 1) C ( 1)

( )! 2 !

m
l m l mm m l m l

rl l m
r

l m x d x
l m l dx

  


 


 
  

 

Or  P ( )m
l x  = 

( )!
( 1) P ( )

( )!
m m

l
l m

x
l m





...(3.30)

3.8.1. Recurrence relations of Associated Legendre’s Polynomials

Recurrence relations of associated Legendre’s polynomials can be obtained directly from the recurrence
relations of Legendre’s polynomials. The equation has its role in solving spherical harmonics utilized to
quantum mechanics to solve the  and  part of spherically symmetric problems.

The first recurrence relation can be obtained by differentiating equation (3.10) m times with respect to
x one gets

1P ( )
( 1)

m
l

m
d x

l
dx
 = 1( P ( )) P ( )

(2 1)
m m

l l
m m

d x x d x
l l

dx dx
 

Or 1P ( )
( 1)

m
l

m
d x

l
dx
 = 1P ( ) P ( ) P ( )

(2 1) (2 1)
m m m

l l l
m m m

d x d x d x
l x l m l

dx dx dx
   

Multiplying the above equation by the factor of (– 1)m 2 2(1 )
m

x , one gets
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12 2 P ( )
( 1) ( 1) (1 )

m m
lm

m
d x

l x
dx
    = (2l + 1) x (– 1)m 22 P ( )

(1 )
m m

l
m

d x
x

dx
  + (2l + 1) m (– 1)m

2 2 P ( )
(1 )

m m
l
m

d x
x

dx
  12 2 P ( )

( 1) (1 )
m m

lm
m

d x
l x

dx
  

Using the definition of associated Legendre’s polynomials, the above equation could be rewritten as

1( 1) P ( )m
ll x =

1
2 12

1( 2 1) P ( ) (2 1) (1 ) P ( ) P ( )m m m
l l ll x x l m x x l x

    

...(3.31)

The other recurrence relation can be obtained by differentiating equation (3.13) m-1 times with respect

to x and multiplying the result by a factor of 2 2( 1) (1 )
m

m x 

12 /2
1

( 1) (1 ) ( P ( ))
mm m

lm
dx x x
dx




  2 /2 P ( )

( 1) (1 )
m

lm m
m

x

d x
x

d
  

=
12 /2
1

( 1) (1 ) P ( )l

mm m
m

dl x x
dx




 

1
2 2

1
P ( )

( 1) (1 )
m m

lm
m

d x
l x

dx




  =

1
2 22 2

1
P ( ) P ( )

( 1) (1 ) ( 1) (1 )
m mm m

l lm m
m m

d x d x
x x m x

dx dx




    

12 2 P ( )
( 1) (1 )

m m
lm

m
d x

x
dx
  

Using the definition of associated Legendre’s polynomials, the above equation could be rewritten as

1
2 12(1 ) P ( )m

lx l x  =
1

2 12
1P ( ) ( 1)(1 ) P ( ) P ( )m m m

l l lx x m x x x
   

Or   
1

2 12
1[ P ( ) ( 1)(1 ) P ( ) P ( )]m m m

l l lx l m x x x x
      ...(3.32)

The third recurrence relation can be obtained by eliminating 
1

2 2(1 ) P ( )m
lx x from equation (3.28)

and (3.32)

1 1( 1)P ( ) (2 1) P ( ) ( )P ( )m m m
l l ll m x l x x l m x       ...(3.33)

3.8.2. Orthogonality of Associated Legendre’s Polynomials

The orthonormality of P ( )m
l x  and P ( )m

l x for l l can be obtained using the Rodrigue’s formula for

associated Legendre’s differential equation as
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1

1
P ( )P ( )m m

l lx x dx

 =

1

1

( )!
( 1) P ( ) P ( )

( )!
m m m

l l
l m

x x dx
l m









  ...(3.34)

Here the result of equation (3.30) has been utilized. Equation (3.29) could be utilized in the above
equation as

13
2 /2 2 2 /2 2

1

( 1) ( )!
(1 ) ( 1) (1 ) ( 1)

2 !2 !( )!

m l m l mm l m l
l l l m l m

l m d dx x x x dx
l l l m dx dx

  
  



    
          



Or   
1

1
P ( )P ( )m m

l lx x dx

  = 

13
2 2

1

( 1) ( )!
( 1) ( 1)

2 !2 !( )!

m l m l ml l
l l l m l m

l m d dx x dx
l l l m dx dx

  
  



    
       



Integrating the above equation by parts, one gets

1

1
P ( )P ( )m m

l lx x dx

  = 

13 1 2 2
1

1

( )( 1)
( 1) ( 1)

(1 )!2 !2 !

m l m l ml l
l l l m l m

l m d dx x
ml l dx dx

   
   



              

1 1 12 2
1 1

1
( 1) ( 1)

l m l ml l
l m l m

d dx x dx
dx dx

    
   



   
         



The first term on the right hand side will be zero as all the differential terms contain (x2 – 1) that will
vanish for x = ± 1, so that the above equation could be rewritten as

1

1
P ( )P ( )m m

l lx x dx

  = 

13 1 1 12 2
– 1 1

1

( )!( 1)
( 1) ( 1)

( )!2 !2 !

m l m l ml l
l l l m l m

l m d dx x dx
l ml l dx dx

     
   



                 


Repeating the same process m times, one gets

1

1
P ( )P ( )m m

l lx x dx

  =  

14
2 2

1

( 1) ( )!
( 1) ( 1)

( )!2 !2 !

m l ll l
l l l l

l m d dx x dx
l ml l dx dx

 
 



                  


Using the Rodrigue’s definition of Pl (x), the above equation could be rewritten as

1

,
1
P ( )P ( )m m

l lx x dx

 =

1

1

( )! P ( )P ,( )
( )! l l
l m x x dx
l m



 
 

   


Using the results of equation (3.16), one is able to rewrite the above equation as

1

1
P ( )P ( )m m

l lx x dx

 =

( )! 2
( )! 2 1 lm
l m
l m l



 

...(3.35)

That is the required orthogonality relation.
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4. HERMITE’S DIFFERENTIAL EQUATION AND IT’S SOLUTION
The Hermite’s differential equation is given as

2

2 2 2d y dyx vy
dxdx

  = 0 ...(4.1)

The equation is utilized in quantum mechanics to solve the problem of simple harmonic oscillator and
to find its eigen values and eigen functions. It is also used in molecular spectroscopy to find the vibrational
spectrum of the molecules, thus keeping in view the importance of the equation, it is necessary to solve
this differential equation.  The equation (4.1) is already in its general form with P (x) = – 2x and Q(x) = 2v
finite for all real numbers, hence no singular point exists for the differential equation (4.1). The general
series solution to the equation is

y =
0

n
n

n
a x






such that y = 1

0

n
n

n
na x







And y = 2

0
( 1) n

n
n

n n a x







Substituting the values of y, y, y in equation (4.1) one can obtain the relation

2 1

0 0 0
( 1) 2 2n n n

n n n
n n n

n n a x x na x v a x
  

 

  
     = 0

Or 
2

0 0 0
( 1) 2 2n n n

n n n
n n n

n n a x na x v a x
  



  
      = 0

2

0 0
( 1) 2 ( ) 0n n

n n
n n

n n a x n v a x
 



 
    

Equating the coefficients of xn on both sides one can obtain
(n + 2) (n + 1) an + 2 – 2 (n – v) an = 0

Such that an + 2 = – 
2( )

( 2)( 1) n
v n

a
n n


 

Substituting n = 0, 1, 2, 3, 4 ....,  one can obtain the values of ans  in terms of a0 and  a1 as

2 0
2 ,
2.1

va a  3 1
2( 1) ,

3.2
va a

 

2
2

4 2 0
2( 2) 2 ( 2)( 1)

4.3 4!
v v va a a 

   
2

2
5 3 1

2( 3) 2 ( 1)( 3)( 1) ,
5.4 5!
v v va a a  

   
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3
3

6 4 0
2( 4) 2 ( 2)( 4)( 1)

6.5 6!
v v v va a a  

   
3

3
7 5 1

2( 5) 2 ( 1)( 3)( 5)( 1)
7.6 7!
v v v v va a a   

   

2 0
( 2) ( 2)( 4)...( 2 2)

2 !

n

n
v v v v na a

n
    

 2 1 1
( 2) ( 1)( 3) ( 5)...( 2 1)

(2 1)!

n

n
v v v v n

a a
n

     




Thus the solution to equation (4.1) is

y  = 2
0

0

( 2) ( 2)( 4) ...( 2 2)
2 !

n
n

n

v v v v na x
n





    

2 1
1

0

( 2) ( 1)( 3)( 5) ...( 2 1)
(2 1)!

n
n

n

v v v v na x
n






     




Additional Information (Taylor Series)
Taylor’s series have been designated so honouring Brook Taylor who invented these series in

1715 and is a series expansion of a function about a regular point and is given as

f (x) =
2( )( ) ( ) ( ) ( )

2!
x af a x a f a f a

    
( )... ( )

!

n
nx a f a

n




Where a is a regular point and f n
 (a) is the nth derivative of f (x) at x = a

4.1. GENERATING FUNCTIONS OF HERMITE POLYNOMIAL
The solutions to Hermite’s Differential equation are known as Hermite Polynomials and the generating

function of Hermite’s polynomials is

22xt te  =
0

H ( )
!

v
v

v

x t
v




 ...(4.2)

To verify it consider the Taylor series expansion of 
22xt te  around t = 0

22xt te  =
2 2 3 32 2 22 2 2

2 31 ...
2! 3!

xt t xt t xt tt tt e e e
t t t

    
   

  

Or
22xt te  =

2 2 22 2 2 2 2( 2 ) –( 2 )
21

2!

x
x x xt t x xt te t

te e e
t t

     
 

 

2 3 3 2( 2 )
3 ...

3!

x
x xt te t e

t

  
 



Or
22xt te  =

2 22 2 3 32 2 2 2( ) ( ) ( )
2 31 ....

2! 3!

x x
x x t x t x te t e tte e e e

t t t
       

   
  

...(4.3)
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Since F( )x t
t





= F( )x t
x


 


Equation (4.3) can be rewritten as

g (x, t) = 
22xt te  =

2 2 22 2 2( ) ( )
21

2!

x
x x t x te tte e e

x xx
    

 
 

2 3 3 2( )
3 .....

3!

x
x te t e

x
 

 


2
2( )

0
( 1)

!

x v v
v x t

v
v

e t e
v x


 




 




At t = 0, the above equation becomes

g (x) =
2

2

0 0

( )
( 1)

! !

x v
v x v

v
v v

f xe e
v vx

 


 


 


 

Where

fv (x) =
2 2

( 1)
v

v x x
ve e

x





...(4.4)

To ensure if fv (x) is the solution to eqn (4.1) consider 
2

F xe  and its differentiation with respect to x,
such that

Fd
dx

=
2

2 2xxe xF   ...(4.5)

Differentiate equation (4.5) v + 1 times using Libnitz formula, one will obtain

2

2
Fv

v
d
dx



 =
1

1
F F2 2

v v

v v
d dx v
dx dx



 

Or
2

2
Fv

v
d
dx



 =
1

1
F F2 2

v v

v v
d dx v
dx dx



 

Or
2

2

v

v
d d F
dx dx

 
   = F F2 2

v v

v
d d dx v
dx dx dx

 
   

...(4.6)

From equation (4.4) one may obtain

Fv

v
d
dx

=
2

2
( 1) ( )

v x v x
vv

d e e f x
dx

  

Substituting the value in equation (4.6) one obtains

2 2
2 (( 1) ( ))v x

v
d e f x
dx

 =
2 2

2 (( 1) ( )) 2 ( 1) ( )v x v x
v v

dx e f x v e f x
dx

    
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Or
2 2
2( 1) ( ( ))v x

v
d e f x
dx

 =
2 2

2 ( 1) ( ( )) 2 ( 1) ( )v x v x
v v

dx e f x v e f x
dx

    

Or   
22 2 22

2
( ) ( )

( 1) 4 4 ( )v x x xv v
v

d f x df x
e xe x e f x

dxdx
  

 
   

 

=
2 2 2( )

2 ( 1) 2 ( ) 2 ( 1) ( )v x x v xv
v v

df x
x e xe f x v e f x

dx
   

      

Or   
22 2

2
( ) ( )

( 1) 2v x xv vd f x df x
e xe

dxdx
 

 
  

 
 = 

2
2 ( 1) ( )v x

vv e f x  ...(4.7)

Eliminating 
2

( 1)v xe from equation (4.7), one can get

2

2
( ) ( )

2 2 ( )v v
v

d f x df x
x vf x

dxdx
  = 0

Therefore,  fv(x) = Hv (x) or

Hv (x) =
2 2

( 1)
v

v x x
ve e

x





...(4.8)

This is the solution to equation (4.7) and is also known as Rodrigue’s formula for Hermite polynomials.
Example 4.1.  Prove that  Hv (–x) = (–1)v Hv (x).
Solution : Replace x with – x in the generating function of Hermite’s polynomials given in equation

(4.2), one gets

22xt te  =
0

H ( )
!

v
v

v

x t
v








Or 22 ( ) ( )x t te    =
0

H ( )
!

v
v

v

x t
v








Or
0

H ( )( )
!

v
v

v

x t
v






 =

0

H ( )
!

v
v

v

x t
v








Comparing the coefficients of tv on both sides, one gets
Hv (– x) = (–1)v Hv(x)

Example 4.2.  Convert 2H4 (x) + 3H4(x) – H2(x) + 5H1 (x) + 6H0(x) into ordinary polynomial.
Solution : Here

H4(x) = 16x4 – 48x2 + 12
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H3 (x) = 8x3 – 12x
H2 (x) = 4x2 – 2
H1 (x) = 2x
H0 (x) = 1

Substituting the values of Hermite’s polynomials in the given equation one can obtains
2 (16x4 – 48x2 + 12) + 3 (8x3 – 12x) – (4x2 – 2) + 5.2x + 6.1
32x4 + 24x3 – 100x2 – 26x + 32

4.2. ORTHOGONALITY OF HERMITE’S POLYNOMIALS
The orthogonalityof Hermite’s polynomials is given as

2
H ( ) H ( )x

v ve x x dx






 = 2 . !v

vvv  

And can be deduced by utilizing the generating function

2 22 2xt t xs se e  =
0 0

H ( )H ( )
! !

v v

v v
v v

t sx x
v v

  


    

Multiplying both sides by 
2xe  and integrating between the limits –  to , one gets

2
 H ( ) H ( )

! !

v v
x

v v
t se x x dx
v v

 





 =
2 2 22 2x xt t xs se e e dx


  




Or
2

H ( ) H ( )
! !

v v
x

v v
t se x x dx
v v

 





 =
2 2 22 ( )x x t s t se dx


    


 ...(4.9)

Multiplying and dividing RHS of equation (4.9) with e2st, the following result can be achieved

2
H ( )H ( )

! !

v v
x

v v
t se x x dx
v v

 





 =
22 ( ) 2st x t s ste e dx e


    



 

As 
2

,xe dx
 


   is called the integral of Gaussian.

2
H ( ) H ( )

! !

v v
x

v v
t se x x dx
v v

 





 = 2ste  ...(4.10)

Here e–2st =
2 2

0

4 21 2 ....
2! !

v v v

v

s t s tst
v

   


   



Thus equation (4.10) can be rewritten as

2
H ( )H ( )

! !

v v
x

v v
t se x x dx
v v

 





 =
0

2
!

v v v

v

s t
v





  



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Comparing the coefficients of tv sv on both sides, it could be concluded that

2
H ( ) H ( )x

v ve x x dx





 
 = 2 !

0
v v if v v
if v v

   

The orthogonality of Hermite’s polynomials can be used to expand any arbitrary function f (x) in
terms of Hermite’s polynomials as

f (x) =
0

H ( )v v
v

a x



 ...(4.11)

The coefficient av can be found by multiplying equation (4.11) with 
2

H ( )x
ve x
  and integrating both

sides between the limits –  to ,

2
( ) H ( )x

ve f x x dx






 =

2

0
H ( ) H ( )x

v v v
v

a e x x dx





 
 

Or
2

( ) H ( )x
ve f x x dx






 =

0
2 !v

v vv
v

a v





 

2
( ) H ( )x

ve f x x dx






 = 2 !v

va v
 

Or
21 ( )H ( )

2 !
x

vv
e f x x dx

v





 
 = av ...(4.12)

Example 4.3.  Express f (x) = e2bx in terms of Hermite polynomials and use the result to deduce the
value of integral

2 2 H ( )x bx
ve x dx


 




Solution : Consider generating function equation (4.2) of Hermite’s polynomials and replace t with b

22xb be  =
0

H ( )
!

v
v

n

x b
v








Or e2xb =
2

0

H ( )
!

v
b v

v

x b
e

v








But f (x) = e2bx hence

f (x) =
2

0

H ( )
!








v
b v

v

x b
e

v ...(4.13)
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Comparing the results obtained in equation (4.13) with equation (4.11), one can obtain

av =
2

!

v
bb e

v

Comparing the values of av from equation (4.12) to the above results one can get

2

!

v
bb e

v
=

2 21 H ( )
2 !

x bx
vv e x dx

v


 

 

Or
2 2 H ( )x bx

ve x dx


 


 =

2
2v v bb e 

4.3. RECURRENCE RELATIONS OF HERMITE’S POLYNOMIALS
The recurrence relations of Hermite’s polynomials to be established are

(a) 2v Hv–1 (x) = Hv (x)

Differentiating equation (4.2) with respect to x, one can obtain

222 xt tt e  =
0

H ( )
!

v
v

v

x t
v








Or
1

0

H ( )
2

!

v
v

v

x t
v




 =

0
H ( ) v

v
v

x t





Comparing the coefficients of 
!

vt
v

 on both sides one will get

2v Hv–1 (x) = Hv (x) ...(4.14)

(b) 2xHv (x) = 2vHv–1(x) + Hv+1 (x)

Differentiating equation (4.2) with respect to t, one can obtain

222( ) xt tx t e  =
1

0

H ( )
!

v
v

v

x t
v

v






0

H ( )
2( )

!

v
v

v

x t
x t

v




  =

1

0

H ( )
( 1)!

v
v

v

x t
v



 

1

0 0

H ( ) H ( )
2 2

! !

v v
v v

v v

x t x t
x

v v

 

 
  =

1

0

H ( )
( 1) !

v
v

v

x t
v



 
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Comparing the coefficients of  
!

vt
v

 on both sides one will get

2xHv (x) – 2vHv–1 (x) = Hv + 1 (x)

Rearranging the terms, one will achieve the recurrence relation

2x Hv (x) = 2vHv–1 (x) + Hv+1 (x) ...(4.15)

(c) Hv (x) = 2xHv (x) – Hv+1 (x)

Substituting the value of 2vHv–1 (x) from recurrence relation (4.14) in to the recurrence relation (4.15),
one gets

2xHv (x) = Hv (x) + Hv+1 (x)

Rearranging the terms, one will achieve the recurrence relation

Hv (x) = 2x Hv(x) – Hv+1 (x) ...(4.16)

Example 4.4.  Show that 2
H ( ) 0m x

nx e x dx






  for any integer, 0  m  n – 1.

Solution : From equation (4.11) one knows that

f (x) =
0

H ( )v v
v

a x





Here f (x) = xm, Hence the above eqn. can be written as

xm =
0

H ( )v v
v

a x





Multiply the above eqn. with 2
H ( )x

ne x  and integrating between the limits –  to , one gets

2
H ( )x m

ne x x dx





 =

2

0
H ( )H ( )x

v n v
v

a e x x dx




 
 

Using the orthogonality of Hermite's polynomial, the above equation can be reduced to

2
H ( )x m

ne x x dx





 =

0
2 !v

v nv
v

a v



   = 0

for n = v the eqn. becomes

2
H ( )x m

ne x x dx





 = 2 !n

na n 

if    n  v
  m lying between 0  m  n – 1
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Thus

an =
21 H ( )

2 !
x m

nn
e x x dx

n







Example 4.5.  Prove that H0(x) = 1
Solution : Considering the generating function of Hermite's polynomial, from eqn. (4.2) and subtituting

v = 0, one can find

22 xt te  =
0

0H ( )
0!
x t

22 xt te  = H0(x) t0

Expanding the LHS of above eqn., one gets
H0(x) t0 = 1 – 2xt – t2 + ........

Comparing the powers of t0 on both sides one gets
H0(x) = 1

Example 4.6.  Prove that H1(x) = 2x
Solution :  From the recurrence relation (4.14) substituting v = 1, one gets

2.1 H0 (x) = H1(x)

or 1H ( )d x
dx = 2.1.1 = 2

Integrating both sides w.r.t. x, one gets

1H ( )d x
dx

dx = 2 dx
or H1(x) = 2x
Example 4.7.  Prove that H2 (x) = 4x2 – 2.
Solution : From the recurrence relation (4.16) substituting v = 1, one gets

1H ( )x = 2xH1 (x) – H2 (x)

Substituting H1(x) = 2x and rearranging the terms, above equation could be rewritten as

H2(x) = (2x) . (2x) ( 2 )d x
dx



or H2(x) = 4x2 – 2

5. LAGUERRE DIFFERENTIAL EQUATION AND ITS SOLUTION

The differential equation
2

2 (1 )
d y dyx x ky

dxdx
   = 0 ...(5.1)
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is called Laguerre’s differential equation of order k and its solutions are called Laguerre’s functions. The
differential equation appears in the radial part solution of one electron atoms, like hydrogen. The equation
can be rewritten as

2

2
(1 )d y x dy k y

x dx xdx


  = 0 ...(5.2)

Such that 1P( ) xx
x


  and Q( ) kx
x

  becomes infinite at x = 0 making it a singular point. The next step

is to check the nature of singularity using the relations

0

1
lim ( 0)
x

x
x

x


 = 1 = Finite

and

2
0

lim ( 0)
x

k
x

x
 =

0
lim 0
x

kx Finite


 

Hence x = 0 is a regular singular point and thus the equation can be solved using Frobenius method.
The solution to equation (5.1) is given as

y =
0

n
n

n
a x







So that y = 1

0
( ) n

n
n

a n x


 




and y = 2

0
( ) ( 1) n

n
n

a n n x





 

Substituting the values of y, y, y in equation (5.1), one can obtain

2

0
( )( 1) (1 )n

n
n

x a n n x x


 


    1

0 0
( ) 0n n

n n
n n

a n x k a x
 

 

 
   

Or  1 1

0 0
( ) ( 1) ( )n n

n n
n n

a n n x a n x
 

 

 
     –

0 0
( ) n n

n n
n n

a n x k a x
 

 

 
   = 0

Or 1

0
(( ) ( 1) ( )) n

n
n

a n n n x


 


    

0
( ) 0n

n
n

a n k x





  

Or  2 1

0 0
( ) ( ) 0n n

n n
n n

a n x a n k x
 

 

 
     
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Equating the coefficients of lowest power of x, i.e. x–1  on both sides one can obtain

a0 2 = 0

a0  0, hence 2 = 0, which is an indicial equation, which provides the value of  as

 = 0

Comparing the coefficients of x+n, one can obtain

an+1 (n + 1 + )2 – an (n +  – k) = 0

Or an + 1 = 2
( )
( 1 ) n

n k a
n
 

 
...(5.3)

Substituting  = 0, equation (5.3) becomes

an + 1 = 2
( )
( 1) n
n k a
n




Substituting n = 0, 1, 2, 3, 4 ...., one can obtain the values of na s  in terms of a0 as

a1 = –ka0

a2 = 2
1 02 2

(1 ) ( 1)
( 1)

2 2
k k k

a a
 

 

a3 = 3
1 02 2 2

(2 ) ( 1)( 2)( 1)
3 3 . 2

k k k ka a  
 

1
1 02 2 2

( 1)( 2)...( )
( 1)

...3 .2
n

n
k k k k n

a a
n




  
   = 1

02
( 1)( 2)...( )( 1)

( !)
n k k k k n a

n
   



Or an+1 = 1
02

( 1)( 2)...( 1) ( )!( 1)
( !) ( )!

n k k k k n k n a
n k n

     




Or an+1 =
1

02
!( 1)

( !) ( )!
n k a

n k n




So that the generalized solution of Laguerre’s equation could be written as

y =
1

0 2
0

( 1) !
( !) ( )!

n
n

n

ka x
n k n

 








By considering a0 = – k !

The equation becomes y =
2

2
0

( 1) ( !)
( !) ( )!

n
n

n

k x
n k n








 ...(5.4)

Equation (5.4) is the expression for Laguerre’s functions and are represented by Lk (x)
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5.1. GENERATING FUNCTIONS OF LAGUERRE FUNCTIONS
The generating function of Laguerre Functions is

g (x, t) = 1

0

L ( )1
1 !

kxt
kt

k

x t
e

t k







  ...(5.5)

To verify it consider the expansion of 11
1

xt
te

t



  as

11
1

xt
te

t



 = 
2 2 3 3

2 3
1 ( 1)1 ....

1 1 2!(1 ) 3!(1 ) !(1 )

n n n

n
xt x t x t x t

t t t t n t

 
           1

0

( 1)
! (1 )

n n n

n
n

x t
n t












that can be expanded further by expanding the term (1 – t)–n–1 as

– –1

0

( 1) (1 )
!

n n n
n

n

x t t
n






  = 

0

( 1)
!

n n n

n

x t
n







2( 1) ( 2) ( 1) ( 2) .... ( )
1 ( 1) .... ...

2! !
ln n n n n l

n t t t
l

            

0 0

( 1) ( 1) ( 2) .... ( ) !
! ! !

n n n l

n l

x t n n n l n
n n l

  

 

   
  

Or
1

0

( 1) (1 )
!

n n n
n

n

x t t
n


 




 =

0 0

( 1) ( )!
! ! !

n n n l

n l

x t n l
n n l

  

 

   ...(5.6)

Substituting n + l = k, equation (5.6) becomes

1

0

( 1) (1 )
!

n n n
n

n

x t t
n


 






2

2
0 0 0 0

( 1) ! ( 1) ( !)
! !( )! ( )!! ( !)

n n k n n k

n k n l

x t k x t k
n n k n k nk n

   

   

 


     ...(5.7)

Comparing the results of equation (5.7) with equation (5.4), one can obtain

11
1

xt
te

t




=

0
L ( )

!

k

k
k

t x
k






5.2. RODRIGUE’S FORMULA FOR LAGUERRE FUNCTIONS
The Rodrigue’s formula or the differential representation for Laguerre functions is given as

Lk (x) = ( 1) ( )
k

k x k x
k

de x e
dx

 ...(5.8)

To prove it consider a function gk (x) = xk e–x and differentiate it k times with respect to x using Libnitz
formula, such that
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( )k k x

k
d x e

dx



 = 
0

C
k r k r x

k
r k r r

r

d x d e
dx dx

  



  = 

0

!
( )! !k

k
k r r



   k (k –1) (k – 2) .... (k – r + 1) xk – r (–1)r e–x

Or  
( )k k x

k
d x e

dx



 = 
0

! ( 1) ( 2) .... ( 1) ( )! ( 1)
( )! ! ( )!

k r r x

r

k k k k k r k r x e
k r r k r


 



    


 

Or  
( )k k x

k
d x e

dx



 = 
2

2
0

( 1) ( !)
(( ) !) !

r
k r x

r

k x e
k r r


 






 ...(5.9)

Substituting k – r = n, and multiplying equation (5.9) with ex the equation becomes

( )k k x
x

k
d x ee

dx



=
2

2
0

( 1) ( !)( 1)
( !) ( )!

n
k n

r

k x
n k n











Or
( )( 1)

k k x
k x

k
d x ee

dx


 = Lk (x)

5.3. ORTHOGONALITY OF LAGUERRE FUNCTIONS
The orthogonality of Laguerre Functions is given as

0
L ( )L ( )x

k le x x dx


 = (k!)2 kl

And can be deduced by putting equation (5.1) in Sturm Liouville form as

L ( )
L ( )x xk

k
d xd e ke x

dx dx
  

  
= 0 ...(5.10)

Similarly

L ( )
L ( )x xl

l
d xd e le x

dx dx
  

  
= 0 ...(5.11)

Multiplying equation (5.10) with Ll (x) and equation (5.11) with Lk (x), subtracting and integrating
between the limits 0 to , one can get

–

0 0

L ( ) L ( )
L ( ) L ( ) ( ) L ( ) L ( ) 0x x xk l

l k k l
d x d xd dx e x e dx k l e x x dx

dx dx dx dx

 
     

           
 

Or  
0

L ( ) L ( )
L ( ) L ( ) ( )x xx l

l k
d x d xd x e x e dx k l

dx dx dx


     

          


0
L ( ) L ( ) 0x

k le x x dx


 
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Or  
0

L ( ) L ( )
L ( ) L ( ) ( )x xk l

l k
d x d x

x e x e k l
dx dx


     

          
 

0
L ( )L ( ) 0x

k le x x dx


 

The first term in the square brackets becomes zero at both the limits, concluding

0
( ) L ( ) L ( )x

k lk l e x x dx


  = 0

Thus there are two conclusions from the above relation, one is

Either (k – l) = 0

Or
0

L ( ) L ( )x
k le x x dx


 = 0 ...(5.12)

that leads to the conclusion that, 
0

L ( )L ( ) 0,x
k le x x dx

    when l  k, When l = m, the relation can be

evaluated from the generating function (5.5), after multiply with e–x as follows :

0
L ( )

!

k

k
k

t x
k




  = /11

1
xt te

t
 



2
2

0
L ( )

!

k
x

k
t e x dx
k


 

 
 

 =
2 1
1 1

2 2
0 0

1 1
(1 ) (1 )

xt tx x
t te dx e dx

t t

   
 

  

Or
2

2
2

0
L ( )

( !)

k
x

k
t e x dx
k


 = – 

1
1

2 2

0

1 1 1 (0 1)
1 1(1 ) (1 )
1

tx
te t

t tt t
t





         

  

2
2

2
0

L ( )
( !)

k
x

k
t e x dx
k


 = 2

2
0

1
(1 )

k

k
t

t









Comparing the coefficients on both sides one can achieve the result

2

0
L ( )x

ke x dx


 = (k!)2 ...(5.13)

Equation (5.12) and (5.13) can be written in the combined form as

0
L ( ) L ( )x

k le x x dx


 = (k!)2 k! ...(5.14)
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5.4. RECURRENCE RELATIONS OF LAGUERRE FUNCTIONS

(a) k Lk–1 (x) = 1L ( ) L ( )k kk x x   ...(5.15)

Differentiating equation (5.5) with respect to x, one gets

1
2(1 )

xt
tt e

t





=

0

L ( )
!

k
k

k

x t
k








Or
0

L ( )
1 !

k
k

k

x tt
t k






  =
0

L ( )
!

k
k

k

x t
k








Or
1

0

L ( )
!

k
k

k

x t
k




 =

1

0 0

L ( ) L ( )
! !

k k
k k

k k

x t x t
k k

 

 

 
 

Comparing the coefficients of 
!

kt
k

 on both sides, one gets

–kLk–1 (x) = Lk (x) – kLk–1 (x)
Or kLk–1 (x) = kLk–1 (x) – Lk (x)
(b)  Lk+1 (x) + (x – 2k – 1) Lk (x) + k2 Lk–1 (x) = 0 ...(5.16)
Differentiating equation (5.5) with respect to t, one gets

1
2 3 2

1
(1 ) (1 ) (1 )

xt
tx xt e

t t t




 
   

    
=

1

0

L ( )
( 1)!

k
k

k

x t
k



 

Or 1
3

1
(1 )

xt
tx t e

t




   
 
  

=
1

0

L ( )
( 1)!

k
k

k

x t
k



 

Or 2
0

L ( )1
!(1 )

k
k

k

x tx t
kt





   
 
  

 =
1

0

L ( )
( 1)!

k
k

k

x t
k



 

Or
0

L ( )
( 1 )

!

k
k

k

x t
x t

k




    =

1
2

0

L ( )
(1 )

( 1)!

k
k

k

x t
t

k








Or
0

L ( )
( 1 )

!

k
k

k

x t
x t

k




    =

1
2

0

L ( )
(1 2 )

( 1) !

k
k

k

x t
t t

k




 



Or 
1

0 0

L ( ) L ( )
( 1)

! !

k k
k k

k k

x t x t
x

k k

 

 
     = 

1 1

0 0 0

L ( ) L ( ) L ( )
2

( 1)! ( 1)! ( 1)!

k k k
k k k

k k k

x t x t x t
k k k

   

  
 

    
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Comparing the coefficients of 
!

kt
k

 on both sides, one gets

(1 – x) Lk (x) + kLk – 1 (x) = Lk+1 (x) – 2kLk (x) + k (k + 1) Lk–1 (x)
Rearranging the terms one gets
Lk + 1 (x) + (x – 2k – 1) Lk (x) + k2 Lk–1 (x) = 0

6. BESSEL’S DIFFERENTIAL EQUATION AND IT’S SOLUTION
The differential equation

2
2 2 2

2 ( )d y dyx x x m y
dxdx

   = 0 ...(6.1)

is called Bessel’s differential equation of order m and its solutions are called Bessel’s functions. The
equation has many applications in solving the physical problems and hence is of great importance. It
finds its applications in solution of Laplace equation and Helmholtz equation of a quantum free particle.
The equation can be rewritten as

2 2 2

2 2
1 ( )d y dy x m y
x dxdx x


  = 0 ...(6.2)

Such that 
1P( )x
x

  and 
2 2

2
( )Q( ) x mx

x


  becomes infinite at x = 0 making it a singular point. The

next step is to check the nature of singularity using the relations

0
0

lim ( )P( )
x x

x x x




and
2

00
lim ( ) Q( )
x

x x x




for Bessel’s equation. Thus

0

1
lim ( 0)
x

x
x

 = 1 = Finite

and
2 2

2
20

( )lim ( 0)
x

x mx
x


 = 2 2 2

0
lim ( )
x

x m m Finite


   

Hence x = 0 is a regular singular point and thus the equation can be solved using Frobenius method.
The solution to equation (6.1) is given as

y =
0

n
n

n
a x







So that y = 1

0
( ) n

n
n

a n x






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and y = 2

0
( ) ( 1) n

n
n

a n n x





 

Substituting the values of y, yyin equation (6.1), one can obtain

2 2 1 2 2

0 0
( ) ( 1) ( ) ( )n n

n n
n n

x a n n x a n x x m
 

 

 
       

0
0n

n
n

a x







Or   
0 0

( )( 1) ( )n n
n n

n n
a n n x a n x

 
 

 
     2 2

0 0

n n
n n

n n
a x m a x

 
 

 
    = 0

Or   
2 2

0 0
(( ) ( 1) ( ) ) 0n n

n n
n n

a n n n m x a x
 

 

 
       

Or   
2 2

0 0
(( ) ( 1) ( ) ) 0n n

n n
n n

a n n n m x a x
 

 

 
       

Or   
2 2 2

0 0
(( ) ) 0n n

n n
n n

a n m x a x
 

 

 
    

Equating the coefficients of lowest power of x, i.e. xa on both sides one can obtain
a0 (2 – m2) = 0

As a0  0, hence 2 – m2 = 0, which is an indicial equation, which provides the value of  as
 = ± m

Comparing the coefficients of x+1, one can obtain
a1 (( + 1)2 – m2) = 0

As  = ± m, hence a1 should be equal to zero
Equating the coefficients of xn +  + 2, it could be retrieved as

an + 2 ((n + 2 + )2 – m2) + an = 0

Or an+2 = 2 2( 2 )
na

n m


  

Substituting n = 0, 1, 2, 3, 4 ..., one can obtain the values of ans in terms of a0 and a1 as

2 02 2
1 ,

(2 )
a a

m
 

  3 12 2
1 0,

(3 )
a a

m
  

 

2
0

4 22 2 2 2 2 2
( 1)1

(4 ) ((4 ) )((2 ) )

a
a a

m m m


  

      
5 32 2

1 0
(5 )

a a
m

 
  ,
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3
0

6 42 2 2 2 2 2 2 2
( 1)1

(6 ) ((6 ) )((4 ) )((2 ) )

a
a a

m m m m


 

        
7 52 2

1 0
(7 )

a a
m

 
 

And the generalized term could be written as

a2n = 0
2 2 2 2 2 2 2 2

( 1)

((2 ) )..((6 ) )((4 ) )((2 ) )

n a

n m m m m



       

Substituting the value of  = m, the term could be rewritten as

a2n = 0
2 2 2 2 2 2 2 2

( 1)

((2 ) )..((6 ) )((4 ) )((2 ) )

n a

n m m m m m m m m



       

Or a2n = 0( 1)
2 ...6.4.2. (2 2 ) (4 2 ) (6 2 ) .... (2 2 )

n a
n m m m n m


   

Or a2n = 0
2

( 1)

2 . ....3.2.1. (1 ) (2 ) (3 ) .... ( )

n

n
a

n m m m n m



   

Multiplying and dividing the expression of a2n obtained above with m!, the term could be rewritten as

a2n = 02
( 1) !

2 ! ( )!

n

n
m a

n n m




Substituting the value of  = – m, the second coefficient could be obtained as

a2n = 02
( 1) ( )!

2 !( )!

n

n
m a

n n m
 




So that the generalized solution of Bessel’s equation could be written as

y =
2 2

0 02 2
0 0

( 1) ! ( 1) ( )!
2 !( )! 2 !( )!

n n
n m n m

n n
n n

m ma x a x
n n m n n m

 
 

 

  


 
 

Or y =
2 2

0 0
0 0

( 1) 2 ! ( 1) 2 ( )!
!( )! 2 !( )! 2

n m n mn m n m

n n

m x m xa a
n n m n n m

   

 

              

By considering 0
1

2 !ma
m

  and 0
1 ,

2 ( )!ma
m


 the expression for y can be expressed as follows :

y  =  
2 2

0 0

( 1) ( 1)
!( )! 2 !( )! 2

n m n mn n

n n

x x
n n m n n m

  

 

             ...(6.3)

But if | m | > 1, (–m + 1) is negative, the factorial for negative numbers are not defined. This dilemma
however can be circumvented by working with the definition of gamma function for non integers, nonetheless
the difficulty still pursues, if m is a negative integer.
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6.1. BESSEL’S FUNCTION
The two solutions given in equation (4.3) of the Bessel’s differential equation are known as Bessel’s

Function. Thus the first term

y1 =
2

0

( 1)J ( )
!( )! 2

n mn

m
n

xx
n n m





      ...(6.4)

is called the Bessel’s function for positive m values and the second term of the solution of Bessel’s
Equation

y2 =
2

0

( 1)J ( )
!( )! 2

n mn

m
n

xx
n n m






      ...(6.5)

are the Bessel’s function for negative m values.

6.2. LINEAR DEPENDENCY OF THE TWO SOLUTIONS OF BESSEL’S EQUATION
When m = 0, Jm (x) = J0 (x) and also  J–m (x) = J0 (x), the two solutions y1 and y2 became same, and

hence are not linearly dependent. If m is an integer again they are not linearly independent. To prove it
consider

J–m (x) =
2

0

( 1)
! ( )! 2

n mn

n

x
n n m





  
  

Let n = n – m, so that the above equation becomes

J–m (x) =
2

0

( 1)
( ) ! ! 2

n mn m

n

x
n m n

 



  
   

J–m (x) = (–1)m Jm (x) ...(6.6)
Thus the two solutions of Bessel’s differential equation are linearly dependent. If m is not an integer

J–m (x)  Jm (x) and hence are linearly independent. The proof of the same will be discussed after defining
Wronskian.

6.3. WRONSKIAN AND THE SECOND SOLUTION
Frobenius method yields only one solution. It fails to give a second, linearly independent solution. In

that case, the second solution can be obtained by some other method. The other method of getting
second solution is using the Wronskian. Wronskian of two linearly independent solutions of a differential
equation is given as

W (y1, y2) =
1 2

1 2 2 1
1 2

y y
y y y y

y y
  

 

Here primes denotes differentiation with respect to x. The first derivative of wronskian with respect to
x is then given as

W( )d x
dx = y1 y2 – y2 y1 ...(6.7)
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Since y1 and y2 are the solutions to equation (2.5), thus

y1 = – P (x) y1 – Q (x) y1 ...(6.8)

And

y2 = – P (x) y2 – Q (x) y2 ...(6.9)

Substituting equation (6.8) and (6.9) in eqution (6.7) one gets

W( )d x
dx = y1 (–P (x) y2 – Q (x) y2) – y2 (–P (x) y1 – Q (x) y1)

Or
W( )d x
dx = – P (x) (y1 y2 – y2 y1)

Or
W( )d x
dx

= – P (x) W (x)

Using the method of variable separation and integrating the two sides, one gets

ln W (x) = –  P (x) dx

Or W (x) = W (a) e– P (x) dx ...(6.10)

Equation (6.10) can now be used to get the second solution y2 if y1 is known by the following method.

W (x) = y1 y2 – y2 y1 = 
2 22 1 2
1 12

1 11

y y ydy y
y dx yy

    
      

Thus equation (6.10) can be rewritten as

2 2
1

1

ydy
dx y

 
   = W (a) e– P (x) dx

Or
2

1

yd
dx y

 
   =

P( )

2
1

W( )
x dxea

y

 
...(6.11)

Integrating equation (6.11) w.r.t. x one gets

2

1

y
y =

P( )

2
1

W ( )
x dxea dx

y

 



Or y2 =
P( )

1 2
1

W( )
x dxey a dx

y



 ...(6.12)

That is the second solution to a general differential equation, whose second solution could not be
obtained using Frobenius method.

lenovo
Highlight
equation
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Example 6.1.  Find the second solution of the differential equation

2
2 2

2
d y dyx x x y

dxdx
  = 0

And the first solution is given as J0 (x)
Solution : The given equation can be rewritten as

2

2
1d y dy y
x dxdx

  = 0

Thus  
1P( ) ,x
x

  so that P( ) / ln 1 ,x dx dx x xe e e
x

        and y2 is given as

y2 = 0 2
0

1 1J ( )
(J ( ))

x dx
x x ...(6.13)

Here J0 (x) =
2

2
0

( 1)
2( !)

nn

n

x
n





  
  

2 4 6
1 .....

4 64 2304
x x x 

     
 

So that equation (6.13) can be rewritten as

  y2  =   
22 4 6 2 4 611 ...... 1 .....

4 64 2304 4 64 2304
x x x x x x dx

x

   
          

   


 Or  y2  =  
2 4 6 2 41 51 .... 1 .....

4 64 2304 2 32
x x x x x dx

x
   
         

   


Or  y2  =  
2 4 6 31 51 .... ....

4 64 2304 2 32
x x x x x dx

x
   
         

   


Or   y2 = 
2 4 6 2 451 .... ln .....

4 64 2304 4 128
x x x x xx

   
         

   

 y2 = 
2 4 6 2 2 4 6

ln 1 ...... 1 ..... ......
4 64 2304 4 4 64 2304
x x x x x x xx

   
            

   

6.4. Jm (x)  AND J–m (x) ARE LINEARLY INDEPENDENT FOR m, NOT AN
INTEGER

If the wronskian of Jm (x)  and J–m (x) is non zero for m, a non integer, the Bessel’s functions will be
proved to be linearly independent, hence consider
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W( )d x
dx

 = 
d
dx

 (Jm (x) J–m (x) – Jm (x) J–m(x)) = Jm (x) J–m (x) – Jm (x) J–m (x) ...(6.14)

Since Jm (x) and J–m (x) , both are the solutions of equation (6.1), thus

2

2
J ( )md x

dx
=

2

2
J ( )1 1 J ( )m

m
d x m x

x dx x

 
   

 
...(6.15)

And
2

2
J ( )md x

dx
 =

2

2
J ( )1 1 J ( )m

m
d x m x

x dx x




 
   

 
...(6.16)

Substituting equations (6.15) and (6.16) in equation (6.14), one gets

W( )d x
dx =

2

2
J ( )1J ( ) 1 J ( ) J ( )m

m m m
d x mx x x

x dx x


 

  
     

  

2

2
J ( )1 1 J ( )m

m
d x m x

x dx x

  
    

  

Or
W( )d x
dx

=
J ( ) J ( ) J ( ) J ( )m m m mx d x x d x

x dx x dx
  

   

Or
W( )d x
dx =

W( )x
x



Or
W( ) W( )d xx x
dx

 = 0

Or
( W( ))d x x

dx = 0

Or xW (x) = constant

Or W (x) =
constant

x
...(6.17)

Thus W (x)  0, proving that for m, a non integer, the two solutions to Bessel’s equation are linearly
independent.

To evaluate the constant consider the wronskian when n  0 in the expression of Jm (x) and J–m (x)
such that

Jm (x) =
1

! 2

mx
m

 
  
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J–m (x) =
1

( )! 2

mx
m


 
  

Jm (x) =
12

( 1)! 2

mx
m


 
  

J–m (x) =
11

2( 1) ! 2

mx
m

 
 
   

The Wronskian becomes

W (x) =
11 1 1

! 2 2( 1) ! 2 ( )! 2

m m mx x x
m m m

  
                 

 
12

( 1)! 2

mx
m


 
  

Or W (x) =
1 1 1

!( 1)! ( )!( 1)!x m m m m
 

     

Or W (x) =
1 1 1

( 1) ( ) ( ) ( 1)x m m m m
 

         

Using the property of  (m + 1) = m (m), the above relation could be rewritten as

W (x) =
1 1 1 2 1

( ) ( ) ( ) ( ) ( ) ( )x m m m m m m x m m m
 

           

Using the property of gamma function for non integers

(m)  (– m) = sinm m





The expression for W (x) can be rewritten as

W (x) =
2 sin 2 sinm m m
x m x

 
  

 
...(6.18)

Comparing equation (6.17) and (6.18), one gets

Constant = – 
2sin m



6.5. GENERATING FUNCTION OF BESSEL’S FUNCTION
The generating function of Bessel’s equation is given as

g (x, t) =
1

2
x t

te
    ...(6.19)

To prove it separate the exponential of the generating function into two parts

g (x, t) = 22 ,
xxt
te e


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Expand the exponential terms using Taylor series expansion

g (x, t) =
0

2 2( 1)
! !

n n

n

n n

x xt
t

n n



 


 

   
      


 

Or g (x, t) =
0

( 1)
2 ! !

n n n n
n

n n

x t
n n

    


  

       ...(6.20)

Considering n = n + m, equation (6.20) becomes

g (x,t) =
2

0
( 1)

2 ( )! !

n m m
n

n m

x t
n m n

 


  

       

Or g (x, t) =
0

J ( ) m
m

m
x t






Comparing the results of equation (6.19) and (6.20) one gets

1
2
x t

te
    = J ( ) m

m
m

x t



 ...(6.21)

6.6. RECURRENCE RELATIONS OF BESSEL’S FUNCTION
The Bessel’s function satisfy following recurrence relations

(a) Jm–1 (x) + Jm+1 (x) =
2 J ( )m

m x
x ...(6.22)

Consider the differentiation of generating function (6.21) of Bessel’s Functions with respect to t

1
2

2
11

2

x t
tx e

t

      
= 1J ( ) m

m
m

m x t




  


Or 2
11 J ( )

2
m

m
m

x x t
t



  

 
    = 1J ( ) m

m
m

m x t




  


Or   2J ( ) J ( )
2 2

m m
m m

m m

x xx t x t
 



     
   = 1J ( ) m

m
m

m x t




  


Comparing the coefficients tm–1 on both sides one gets

1 1J ( ) J ( )
2 2m m
x xx x  = mJm(x)
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Or Jm–1 (x) + Jm+1 (x) =
2 J ( )m

m x
x

(b) Jm–1 (x) – Jm+1 (x) = 2Jm (x) ...(6.23)
Consider the differentiation of generating function (6.21) of Bessel’s Functions with respect to x

1
21 1

2

x t
tt e

t

      
= J ( ) m

m
m

x t





Or
1 1 J ( )
2

m
m

m
t x t

t



  

     = J ( ) m
m

m
x t



  


Or 
1 11 1J ( ) J ( )

2 2
m m

m m
m m

x t x t
 

 

   
   = J ( ) m

m
m

x t





Comparing the coefficients tm on both sides one gets

1 1
1 1J ( ) J ( )
2 2m mx x  = J ( )m x

Or Jm–1(x) – Jm +1 (x) = 2Jm (x)

(c) Jm+1 (x) = J ( )– J ( )m m
m x x
x

 ...(6.24)

Subtracting equation (6.22) from equation (6.23), one gets

2Jm + 1 (x) =
2 J ( ) 2J ( )m m

m x x
x

 

Or Jm + 1 (x) = J ( ) J ( )m m
m x x
x

 

Example  6.2.  Express  J6 (x) in terms of J0 (x) and J1 (x)
Solution : Consider the recurrence relation

Jm – 1 (x) + Jm + 1 (x) =
2 J ( )m

m x
x

And let m = 5, such that

J4 (x) + J6 (x) = 5
10 J ( )x
x

Or J6 (x) = 5 4
10 J ( ) J ( )x x
x

 ...(6.25)

Again substituting m = 4 in equation (6.22), one gets
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J5 (x) = 4 3
8 J ( ) J ( )x x
x



So that equation (6.25) becomes

J6 (x) = 4 3 4
10 8

J ( ) J ( ) J ( )x x x
x x
    

Or J6 (x) = 4 3
80 10

1 J ( ) J ( )x x
x x

    

Substituting m = 3 in equation (6.22) and back substitution to J4 (x) in above equation, one gets

J6 (x) = 3 2 3
80 6 10

1 J ( ) J ( ) J ( )x x x
x x x

           

Or J6 (x) = 3 2
480 16 80J ( ) 1 J ( )x x

x xx
          

Proceeding in a same way one gets

J6(x) = 1 05 3 4 2
3840 768 18 1920 144J ( ) 1 J ( )x x

xx x x x
   

          

6.7. DIFFERENTIAL FORM OF BESSEL’S FUNCTION
The differential form of Bessel’s function is given as

Jm (x) = 0
1( 1) . J ( )

m
m m dx x

x dx
     ...(6.26)

This can be proved by using induction method, for that

Consider equation (6.23) and let m = 0, one gets

J–1 (x) – J1 (x) = 2J0 (x)

Using (6.6) from m = 1, one gets

J–1 (x) = – J1 (x)

Hence the above equation becomes

–2 J1 (x) = 2J0 (x)

Or – J1 (x) = J0 (x)

Thus equation (6.26) is true for m = 0, consider that the equation is also true for m = n, so that
equation (6.26) can be rewritten as

Jn (x) = 0
1( 1) . J ( )

n
n n dx x

x dx
     ...(6.27)
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To prove that it is also true for m = n + 1, consider

1
1 1

0
1( 1) . J ( )

n
n n dx x

x dx


       = 1 1

0
1 1( 1) J ( )

n
n n d dx x

x dx x dx
       ...(6.28)

From equation (6.27) one gets

(– 1)n x–n
 Jn (x) = 0

1 J ( )
nd x

x dx
 
  

Hence equation (6.28) becomes

1
1 1

0
1( 1) . J ( )

n
n n dx x

x dx


       = 1 1 1( 1) (( 1) J ( ))n n n n

n
dx x x

x dx
   

Or
1

1 1
0

1( 1) . J ( )
n

n n dx x
x dx


       =

J ( )
J ( )n

n
d x m x

dx x
 

Using equation (6.24) one gets

1
1 1

0
1( 1) . J ( )

n
n n dx x

x dx


       = 1J ( )n x

Hence the relation is proved using the induction method.

6.8. ORTHOGONALITY OF BESSEL’S FUNCTION
The orthogonality relation for Bessel’s function is given as

1

0
J ( )J ( )m mx x x dx  =

2
1(J ( ))
2

m x





Here Jn  () = Jn () = 0 as  and  are the roots of Bessel’s Function.
To prove it consider Bessel’s equation

2
2 2 2 2

2
J ( ) J ( )

( ) J ( ) 0m m
m

d x d x
x x x m x

dxdx

 
      ...(6.29)

And  
2

2 2 2 2
2

J ( ) J ( )
( ) J ( ) 0m m

m
d x d x

x x x m x
dxdx

 
      ...(6.30)

Multiply equation (6.29) with  
J ( )m x

x


 and (6.30) with 
J ( )m x

x


 and subtract

2 2
2 2

2 2
J ( ) J ( ) J ( ) J ( ) J ( ) J ( )m m m m m mx d x d x x d x d x

x x x x
x dx x dxdx dx

        
     

   
+ (2 – 2) x Jm (x) Jm (x) = 0

Or  
2 2J ( ) J ( )

J ( ) J ( ) ( ) J ( )J ( )m m
m m m m

d x d xd x x x x x x x
dx dx dx

  
           = 0
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Integrating with respect to x between the limits 0 to 1 one gets

1

0

J ( ) J ( )
J ( ) J ( )m m

m m
d x d xd x x x x dx

dx dx dx
  

    
1

2 2

0
( ) J ( )J ( ) 0m mx x x dx     

Or  
1 1

2 2

0 0

J ( ) J ( )
J ( ) J ( ) ( ) J ( )J ( ) 0m m

m m x m m
d x d x

x x x x x x dx
dx dx
 

          

Or  2 2
( J ( ) J ( ) J ( )J ( ))

( )
m m m m       


 

 = 
1

0
J ( ) J ( ) 0m mx x x dx   ...(6.31)

The first term becomes 0 because Jn () = Jn () = 0, therefore the above equation can be rewritten as

1
2 2

0
( ) J ( ) J ( )m mx x x dx     = 0

Thus there are two conclusions from the above relation, one is either (2 – 2) is zero or
1

0
J ( ) J ( )m mx x x dx   is zero, that leads to the conclusion that, 

1

0
J ( ) J ( ) 0m mx x x dx   , when .

When  = , the left hand side of equation (6.31) takes 0/0 form, thus L’hospital’s rule can be applied to
the LHS of equation (6.31) to get

(J ( ) J ( ) ( J ( ) J ( )) J ( ) J ( )
lim lim

2 2
m m m m m m

 

            
  

 

As  Jm () = 0

J ( ) J ( )
lim

2
m m



   


 = 2J ( ) J ( ) 1 (J ( ))
2 2

m m
m

   
 


...(6.32)

Using the recurrence relation (6.23) and considering x = , and using Jm () = 0, one gets

Jm + 1 () = – Jm ()

So that equation (6.31) becomes

1

0
J ( ) J ( )m mx x x dx  = 2 2

1
1 1(J ( )) (J ( ))
2 2m m  

6.9. INTEGRAL REPRESENTATION OF BESSEL’S FUNCTION
Substituting t = ei in equation (6.21), one gets

J ( ) im
m

m
x e




  
 =

( )2
i ix e e

e
  
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Or eix (sin ) = J ( ) (cos sin )m
m

x m i m


 
 

Or cos [x (sin )] + i sin [x (sin )] = J ( ) (cos sin )m
m

x m i m


 
 

Comparing the real and imaginary part on both sides, one gets

cos [x (sin )] = J ( )cosm
m

x m


  
 sin [x (sin )] J ( )sinm

m
x m



  
 

cos [x (sin )] = 0
1

J ( ) (J ( ) J ( )) cosm m
m

x x x m





   sin [x (sin )] = 
1
(J ( ) – J ( )) sinm m

m
x x m








cos [x (sin )] = 0
1

J ( ) (J ( ) ( 1) J ( ))cosm
m m

m
x x x m




       sin [x (sin )] =

1
(J ( ) ( 1) J ( ))sinm

m m
m

x x m



  

The terms on the left hand side, i.e. belonging to cos [x (sin )] will vanish for odd m and that of right
side, i.e. belonging to sin [x (sin )] will vanish for even m, thus the terms could be rewritten as

cos [x (sin )] = 0
2 ( )

J ( ) 2 J ( ) cosm
m even

x x m



  ...(6.33)

And sin [x (sin )] =
1 ( )

2 J ( ) sinm
m odd

x m



 ...(6.34)

Multiplying equation (6.33) with cos n and integrating between the limits 0 to , one will be able to
get

0
cos [ (sin )] cosx n d



     =  0
2 ( )0 0

J ( ) cos 2 J ( ) cos cosm
m even

x n d x m n d
 


     

Using the integral formula 
0

cos cos ,
2 mnm n d

 
     the above equation can be rewritten as

0
cos[ (sin )] cosx m d



   = 0
2( )

J ( ) (0) J ( )m mn
m even

x x



  

Or
0

cos [ (sin )] cosx n d


   =  Jn (x) if n is even ...(6.35)

Similary, multiplying equation (6.34) with sin n and integrating between the limits 0 to , one will be
able to get

0
sin[ (sin )] sinx n d



   =
1( ) 0

2 J ( ) sin sinm
m even

x m n d



   
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Using the integral formula sin sin ,
2 mnm n d






      the above equation can be rewritten as

0
sin [ (sin )] sinx m d



   =
1 ( )

J ( )m mn
m even

x



 

Or
0

sin [ (sin )] sinx m d


   = Jn (x) if n is odd ...(6.36)

Adding equation (6.35) and (6.36) one gets

Jn (x) =
0 0

cos[ (sin )] cos sin [ (sin )] sinx n d x m d
 

       

Or Jn (x) =
0

(cos [ (sin )] cos sin[ (sin )] sin )x n x m d


     

Or Jn (x) =
0

cos ( (sin ) )x n d


   

Or Jn (x) =  
0

1 cos (sin )


   
  n x d

7. STURM-LIOUVILLE FORM OF SECOND ORDER LINEAR DIFFERENTIAL
EQUATION

The Sturm Liouville form of differential equation is given by
 y (x)  + (x) y (x) = 0 ...(7.1)

where  is second order linear differential operator given as

 = ( ) ( )
d d

p x q x
dx dx

     ...(7.2)

here p(x) and q(x) are positive continuous functions and p(x) is also continuous in the given domain
of the function. The operator  defined by equation (7.2) is also known as the self adjoint operator. Any
second order linear differential equation could be written in the form of equation (7.1). To prove it consider
the operator of equation (2.1) as

 =
2

0 1 22P ( ) P ( ) P ( )d dx x x
dxdx

  ...(7.3)

Multiply equation (7.3) with a factor (x) given by
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(x) =
1

0 0

P ( )1 exp
P ( ) P ( )

x dx
x x

so that eqn (7.3) could be rewritten as

(x) =
2

1 1 1 2
2

0 0 0 0

P ( ) P ( ) P ( ) P ( )exp exp
P ( ) P ( ) P ( ) P ( )

x x x xd ddx dx
x x x dx xdx

  

1

0

P ( )exp
P ( )

x dx
x

= using ( ) one getsx xd ae ae
dx



=
2

1 1 2
2

0 0 0

P ( ) P ( ) P ( )exp exp
P ( ) P ( ) P ( )

x x xd d ddx dx
x dx x dx xdx

 
  

 
 

1

0

P ( )exp
P ( )

x dx
x

= 1 2 1

0 0 0

P ( ) P ( ) P ( )exp exp
P ( ) P ( ) P ( )

x x xd ddx dx
dx x dx x x

 
 

 
 

so that  (x)  =  with p (x) 
1

0

P ( )exp and
P ( )

x dx
x

 
   

q(x) = 2 1

0 0

P ( ) P ( )exp
P ( ) P ( )

x x dx
x x

 
Example 7.1.  Write Bessel's differential equation in sturm liouville form.
Solution : Bessel's differential equation is given as

2
2 2 2( )d y dyx x x m y

dx dx
   = 0

with P0 (x) = x2, P1 (x) = x, P2 (x) = – m2

so that 1

0

P ( )exp
P ( )

x dx
x = 2

1exp exp exp (ln )x dx dx x x
xx

   

Multiply the Bessel's equation with 1

2 2

P ( )1 exp
P ( ) P ( )

x dx
x x

=
2

one getsx x
x


2 2

2
d y dy mx x y

dx xdx

 
   

 
= 0
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or
2d dy mx y xy

dx dx x
      = 0

with p (x) = x, q (x) = 
2m

x


,  (x) = x and  = 1,  as the parameters of sturm liouville form of differential

equation.
Example 7.2.  Write Hermite differential equation is sturm liouville form of differential equation.
Solution : Hermite's differential equation is given as

2

2 2 2d y dyx xy
dxdx

  = 0

with P0 (x) = 1,  P1(x) = – 2x and P2 (x) = 2n

so that the multiplying factor 1

2 0

P ( )1 exp
P ( ) P ( )

x dx
x x  could be found as

exp 2xdx =
2 22exp

2
xx e

 
 

 

Multiplying Hermite equation with 
2xe  one gets

22
2 2 2x d y dye x xy

dxdx
  

  
  

= 0

or
2

2xd dy
e xy

dx dx
     = 0

with p (x) = 
2xe ,  q (x) = 0,  = 2n and  (x) = 

2xe as the parameters of Sturm Liouville form of
differential equation

l Second order linear Differential Equations could be solved using power series or frobenius
method depending upon the nature of p(x) and q(x). If p(x) and q(x) are analytic then the
equations are solved using power series, however if p(x) and q(x) have regular singularity the
equations are solved using frobenius method.

l Ordinary point of a differential equation is a point x0, if p(x) and q(x) are finite at x0 and in its
neighbourhood.

l Singularity of a differential equation is a point x0, where p(x) and q(x) fails to be analytic and

becomes infinite. If 
0

0Lim ( ) ( )
x x

x x p x


  and 2
00

Lim( ) ( )
x

x x q x


  are finite the singularity is known

SUMMARY



FROBENIUS METHOD AND SPECIAL FUNCTIONS 107

as regular singularity, however if these limits are infinite, the singularity is called irregular singularity
of the differential equation.

l The Rodrigue’s formula solution of some of the differential equations useful in solving various
problems of physics are :

Legendre’s Polynomials Pl (x) = 21 ( 1)
2 !

l
l

l l
d x

l dx


Associated Legendre’s Polynomials P ( )m
l x  = (– 1)m (1 – x2)m/2 

P ( )m
l
m

d x

dx

 
 
 

Hermite’s Polynomials H (x) = 
2 2

( 1) x xde e
dx


 




Laguerre Polynomials Lk (x) = ( 1) ( )
k

k x k x
k

de x e
dx



Bessel’s Polynomials Jn (x) = 0
1( 1) J ( )

n
n n dx x

x dx
   

l The generating functions g (x, t) of some of the special polynomials are given as :

Legendre’s Polynomials 2 0

1 P ( )
1 2

l
l

l
x t

xt t






 


Hermite’s Polynomials
22

0

H ( )
!

xt t x t
e


 






Laguerre Polynomials
/1

0

L ( )1
1 !

k
xt t k

k

x t
e

t k


 




 

Bessel’s Polynomials

1/2
J ( )

x t mt
m

m
e x t

   

 
 

l The orthogonality of some of the special functions are :

1

1
P ( )P ( )l mx x dx


 = 2

2 1 lml



      with 0 if

1 iflm
l m
l m
  

1

1
P ( ) P ( )m m

l lx x dx

 =

( )! 2
( )! 2 1 lm
l m
l m l



 



108 MATHEMATICAL PHYSICS–II (Sem. III) Hons.

2
H ( ) H ( )xe x x dx




 

 = 2 !

  

0
L ( ) L ( )x

k le x x dx


 = 2( !) klk 

1

0
J ( ) J ( )m mx x x  =

2
1[J ( )]
2

m x





MULTIPLE CHOICE QUESTIONS
1. The general form of linear differential equation of second order

(a) (D2 + P (x) D + Q (x)) y = 0 (b) (D2 – P(x) + Q (x)) y = R (x)
(c) (D2 + P (k) + Q (3)) y = R (x) (d) (D2 – P (k, 9) + Q (k, 3)) y = 0

2. If y = e2t is a solution to 
2

2
5 0

d y dy
ky

dtdt
   , what is the value of k ?

(a) 1 (b) 4
(c) 0 (d) 6

3. A differential equation is considered to be ordinary if it has
(a) one dependent variable (b) more than one dependent variable
(c) one independent variable (d) more than one independent variable

4. For differential equations 
2

3cos
dy

x y x
dx

 
   

, select the order of the differential equation and

Linearity
(a) 0 and linear (b) 1 and linear
(c) 1 and non linear (d) 0 and linear

5. The Differential equation 2(1 ) ( 1) 0
dyd x n n y

dx dx
 

    
 

, with n as a positive integer, is

(a) Legendre’s Differential Equation (b) Bessel’s Differential Equation
(c) Chebyshev’s Differential Equation (d) Hermite’s Differential Equation

6. The differential equation 
2

2 2 2
2

( ) 0,
d y dy

x x x n y
dxdx

     with n as an integer, is

(a) Legendre’s Differential Equation (b) Bessel’s Differential Equation
(c) Chebyshev’s Differential Equation (d) Hermite’s Differential Equation

QUESTIONS
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7. The function Pn(1) is given as
(a) Zero (b) –1
(c) Pn (–1) (d) 1

8. The generating function for Legendre’s function is given as

(a)
1

2 2(1 2 )xt t  (b)
1

2 2(1 2 )xt t


 

(c)
1

2 2(1 2 )xt t  (d)
1

2 2(1 2 )xt t


 

9. Pn(x) is considered as
(a) Non terminating series (b) Terminating Series
(c) Oscillatory Series (d) None of these

10. Qn(x) is considered as
(a) Non terminating series (b) Terminating Series
(c) Oscillatory Series (d) None of these

11. All the eigen values of Pn(x) are
(a) Imaginary (b) Real and lie between –1 to 1
(c) Real and lie between 0 to  (d) Real and equal

12. The generating function for Bessel’s function is given as

(a)
1

2
x t

te
    (b)

1
2
x t

te
    

(c)
1

2
x t

te
     (d)

1
2
x t

te
   

13. The Rodrigues formula for Legendre’s polynomials is given as

(a) 2!P ( ) ( 1)
2

n n
n n n

n dx x
dx

  (b) 2 11P ( ) ( 1)
!2

n n
n n n

dx x
n dx

 

(c) 21P ( ) ( 1)
!2

n n
n n n

dx x
n dx

  (d) 2 1!P ( ) ( 1)
2

n n
n n n

n dx x
dx

 

14. The polynomial 2x2 + x + 3 in terms of Legendre’s polynomials is given as

(a) 1
3  (4P2(x) – 3P1 (x) + 11 P0 (x)) (b) 1

3  (4P2(x) + 3P1 (x) – 11 P0 (x))

(c) 1
3  (4P2(x) + 3P1 (x) + 11 P0 (x)) (d) 1

3  (4P2(x) – 3P1 (x) – 11 P0 (x))

15. In the Legendre’s polynomial 5 3
5

70 15P ( ) ,
63 63

x x x x      
  is given as

(a) 63
2 (b) 63

5

(c) 63
8 (d) 63

10

lenovo
Highlight
change writing style
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16. The degree of  
22 2

2
2 2

2 log
d y dy d y

x
dxdx dx

  
       

(a) One (b) Two
(c) Four (d) Undefined

17. Let Pn(x) be a polynomial of degree n with real coefficients defined in the interval 2  n  4.  If
4

2
P ( )P ( )n m mnx x dx  , then

(a) 0 1
31P ( ) and P ( ) ( 3 )
22

x x x   

(b) 0 1
1P ( ) and P ( ) 3 (3 )
2

x x x  

(c) 0 1
31P ( ) and P ( ) (3 )

2 2
x x x  

(d) 0 1
31P ( ) and P ( ) (3 )
22

x x x  

18. The points where the series solution of the Legendre differential equation
2

2
2

3 3(1 ) 2 1 0
2 2

d y dy
x x y

dxdx
       

will diverge, are located at
(a) 0 and 1 (b) 0 and –1

(c) –1 and 1 (d) 3 5and
2 2

19. Consider the Bessel equation with n = 0  
2

2
1 0

d y dy
y

x dxdx
   , which one of the following

statement is correct?
(a) Equation has regular singular points at x = 0 and x = .
(b) Equation has 2 linearly independent solutions that are entire
(c) Equation has an entire solution and second linearly independent solution singular at x = 0.
(d) Limit x , taken along x-axis, exists for both the linearly independent solutions.

20. Given the recurrence relation for the Legendre polynomials
(2n + 1) xPn (x)  =  (n + 1) Pn + 1 (x) + nPn–1 (x)

Which of the following integrals has a non zero value?

(a)
1 2

11
P ( ) P ( )n nx x x dx (b)

1
21

P ( ) P ( )n nx x x dx

(c)
1 2
1

[ P ( )]nx x dx
 (d)

1 2
21

P ( ) P ( )n nx x x dx



FROBENIUS METHOD AND SPECIAL FUNCTIONS 111

21. The generating function 0( , ) P ( ) n
nng x t x t


   for the Legendre polynomials Pn(x) is

g (x, t) = 
1

2 2(1 2 )xt t


  . The value of P3 (–1) is
(a) 5/2 (b) 3/2
(c) +1 (d) –1

22. Given 0( , ) P ( ) n
nng x t x t


  , for | t | < 1, the value of P5 (–1) is

(a) 0.26 (b) 1
(c) 0.5 (d) –1

23. Given that 
2 2

0H ( ) ,
!

n t tx
nn

tx e
n

  
   the value of H4(0) is

(a) 12 (b) 6
(c) 24 (d) –6

24. In the function 2
P ( ) x

n x e   of a real variable x, Pn (x) is polynomial of degree n. The maximum

number of extrema that this function have is
(a) n + 2 (b) n – 1
(c) n + 1 (d) n

25. The polynomial f (x) = 1 + 5x + 3x2 is written as linear combination of the Legendre polynomials

P0 (x) = 1, P1 (x) = x, P2(x) = 1
2  (3x2 – 1) as f (x) = nCn Pn (x). The value of C0 is

(a) ¼ (b) ½
(c) 2 (d) 4

26. Let x1 (t) and x2 (t) be two linearly independent solutions of the differential equation

2

2
2 ( ) 0d x dx f t x

dtdt
   ,

And let 2 1
1 2

( ) ( )
( ) ( ) ( ) ,

dx t dx t
w t x t x t

dt dt
   if w(0) = 1, then w(1) is given by

(a) 1 (b) e2

(c) 1/e (d) 1/e2

27. The value of the integral 
1 2

10
[ J ( )]x x dx  is equal to

(a) [J2(1)]2 (b) 0

(c) 1
2  [J2 (1)]2 (d) [J1 (1)]2

SHORT ANSWER TYPE QUESTIONS
1. Discuss whether two Frobenius series solutions exist or do not exist for the following equations :

2x2 y + x (x + 1)y – (cos x) y = 0

lenovo
Highlight
change writing style
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2. Given that 
2 2

0 H ( ) ,
!

n t tx
nn

tx e
n

  


  Find the value of H4(0).

3. The Hermite Polynomial Hn(x), satisfies the differential equation
2 H ( )

2n
n

d x
x

dx


H ( )nd x
dx + 2nHn (x) = 0.

Prove that the corresponding generating function

0H ( )
!

n
nn

tx
n


 = G ( , )x t

satisfies the equation

2

2
G G G2 2x t

x tx
   

 
= 0

4. If the function f (x) is defined by the integral equation

0
( )

x
f x dx = xG (1, x)

Prove that It can be expressed as

, 0
P (1) P (1)n m

n m
n m

x







5. Prove that the second order derivative of the Hermite polynomial of nth order, i.e. H ( 2)n n  can
be written as 4n (n – 1) Hn – 2 (x).

6. Find the value of the integral 
1 2 2
1
(1 ) [ P ( )]nx x dx


  .

7. Prove that any function f (x) which is finite and single valued in the interval –1  x  1, and which
has a finite number of discontinuities within this interval can be expressed as a series of legendre
polynomials.

8. Prove that

1
2

1 1
1

P ( )P ( )n nx x x dx 

 =

2 ( 1)
(2 1) (2 1)(2 3)

n n
n n n


  

9. Evaluate 
1 2 2
1

[P ( )]nx x dx


10. Prove that P– (n + 1) (x) = Pn (x)

LONG ANSWER TYPE QUESTIONS
1. Solve x (x – 1) y + (3x – 1) y  + y = 0
2. Find series solution of the differential equation

2

2
d y dy

x y
dxdx

  = 0
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3.  Expand the function f (x) = 
0, 1 0
1 0 1

x
x

  
  

 in terms of Legendre's polynomials.

4. Prove that any arbitrary function f (x) could be represented in terms of Legendre's polynomials,
subjected to the condition that f (x) is defined from x = – 1 to x = 1.

5.  Express the function

f (x) =
0, 1 0

0 1
x

x x
  

  

     in terms of Legendre's Polynomials

6.  Show that 3
2

cos
J ( ) sin

2
xx x x

x
   

7.   Prove that

1/2J ( )x = 2 sin x
x

8.  Prove that x2 Jn (x) = (n2 – n – x2) Jn (x) + x Jn + 1 (x)

9.  Show that Hn (x) = 2n + 1
 

2 2 1Px t n
n

x

xe e t dt
t


   

 

10.  Using the generating function of Hermite polynomials evaluate the value of (a) H2(x),   (b) H3 (x)

HINTS / ANSWERS
MULTIPLE CHOICE QUESTION

1. (a) 2. (d) 3. (c) 4. (c) 5. (a) 6. (b) 7. (d) 8. (d) 9. (b) 10. (a)

11. (b) 12. (a) 13. (c) 14. (c) 15. (c) 16. (d) 17. (d) 18. (c) 19. (c) 20. (d)

21. (d) 22. (d) 23. (a) 24. (c) 25. (c) 26. (d) 27. (c)

2. Hint : Substituting 
2

2
2

in 5 0t d y dy
y e ky

dtdt
    , one gets

4e2t – 10e2t + ke2t = 0
Or 4 – 10 + k = 0

20. Hint : Short answer type question no. 8
21. Hint : Pn (–1) = (–1)n Pn(1) = (–1)n.1 = (–1)n and for n = 3, P3 (–1) = – 1
22. Hint : Pn (–1) = (–1)n Pn (1) = (–1)n.1 = (–1)n and for n = 5, P5 (–5) = –1

23. Hint : 
2 2

0 H ( )
!

n t tx
nn

tx e
n

  


    
2 4 62

0 H (0) 1
! 2! 3!

n t
nn

t t te t
n

 


    
Comparing the coefficients of t4 one gets
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4
4

1H (0)
4! 2!
t      4

4!H ( 0) 12
2!

 

25. Hint : f (x) = 1 + 5x + 3x2

3x2 = 2P2 (x) + 1
Thus f (x) = 2P2(x) + 1 + 5P1(x) + 1 = 2P2 (x) + 5P1 (x) + 2P0 (x)

26. Hint : P ( )t dtw e   here P(t) = 2, so that 2 2dt tw e e   , thus w (1) = e–2

27. Hint : Using orthogonality relation of Bessel equation one have 
1 2 2

10
1[J ( )] [ J ( )]
2n nx x dx   

SHORT ANSWER QUESTIONS
1. The equation can be rewritten as

2 2
( 1) cos

2 2

x x x
y y y

x x


   = 0

Hence x = 0 is a singular point to check its singularity, consider

20

( 1)
lim ( 0)

2x

x x
x

x


 =

0
1 1lim

2 2x
x



 

Similarly
2

20

cos
lim ( 0)

2x

x
x

x
 =

0
lim cos 1
x

x




Both are finite hence Frobenius series solutions exist.

2.
2 2

0 H ( )
!

n t tx
nn

tx e
n

  
    

2 4 62
0 H (0) 1

! 2! 3!
n t

nn
t t te t
n

 
     

Comparing the coefficients of t4 one gets
4

4H (0)
4!
t = 4

4!1 H (0) 12
2! 2!

  

3. 0 H ( ) G ( , )
!

n
nn

tx x t
n





Differentiating the above equation w.r.t. x one gets

0
H ( )

!
n

n
n

tx
n




 =

0
G ( , ), H ( ) G ( , )

!
n

n
n

tx t x x t
n




  

Also differentiating w.r.t ‘t’, one gets
G
t


 =

1 1

0 0
H ( ) H ( )

! ( 1)!
n n

n n
n n

t tn x x
n n

  

 


 
Multiplying the above equation with t one gets

Gt
t


 =

0
H ( )

!
n

n
n

tn x
n






Substituting these values in Hermite’s equation one gets

2

2
G G G2 2x t

x tx
   

 
= 0
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4. G (x, 1) =
1

2 2
0

1(1 2 ) P (1)
1

n
nnx x x

x
 


   

 
Also

0
( )

x
f x dx = x G (1, x) = 1

x
x

Differentiating both sides one gets

f (x) = 0 02
1 P (1). P (1)

(1 )
n m

n mn mx x
x

 
 


 

5. The generating Function for Hermite polynomial 
22

0 H ( )
!

nxt t
nn

te x
n




Considering the second derivative w.r.t. x one gets

22 24 xt tt e  = 0 H ( )
!

n
nn

tx
n






or
2

04 H ( )
!

n
nn

tx
n


 = 0 H ( )
!

n
nn

tx
n





Comparing the coefficients of tn on both sides, one gets

H ( )n x = 4n (n – 1) Hn–2 (x)

6. Using orthogonality relation of Legendre polynomials one have 
1 2
0

2[P ( )]
2 1n x dx

n




And also 2[(1 ) P ( )]n
d x x
dx

   = – n (n – 1) Pn (x)

Multiply the two sides with Pn (x) and integrating the two sides w.r.t. x between the limits –1 to 1
one gets

1
2

1
[(1 )P ( )]P ( )n n

d x x x dx
dx



  =
1

1
( 1) P ( ) P ( )n nn n x x dx



 

1
2 2

1
[(1 )[P ( )]nx x dx



   =
1

2

1

2 ( 1)
( 1) [P ( )]

2 1n
n n

n n x dx
n




   



7. Let f (x) = A0P0 (x) + A1P1 (x) + A2P2 (x) + .... = 
0

A P ( )n n
n

x





Multiplying both sides by Pm (x) dx  and integrating with respect to x from x = –1 to x = 1 gives

1

1
( ) P ( )mf x x dx


 =

1

0 1
A P ( ) P ( )n n m

n
x x dx



 
 

By means of the orthogonality property of the Legendre polynomials one can write
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0

2
A

2 1
nm

n
n n






 =

1

1
( ) P ( )mf x x dx




Or 2A
2 1m m  =

1

1
( )P ( )mf x x dx




Or Am =
1

1

2 1 ( )P ( )
2 m

m f x x dx


 

8. In the recurrence relation  (2n + 1) xPn (x) = (n + 1) Pn + 1 (x) + nPn – 1 (x)
Replacing n by n + 1 and n – 1, respectively one gets

(2n + 3) x Pn + 1 (x) = (n + 2) Pn + 2 (x) + (n + 1) Pn (x) ...(1)
And

(2n – 1) xPn–1 (x) = nPn (x) + (n – 1) Pn – 2 (x) ...(2)
Considering the product of equation (1) and (2) and integrating between the limits –1 to 1, one
gets

(2n + 3) (2n – 1) 
1

2
1 1

1
P ( )P ( )n nx x x dx



 

  =  

1

2
1

( 2) P ( )P ( )n nn n x x dx


 

n (n + 1)
1

2

1
[P ( )] ( 1) ( 2)n x dx n n



  
1

2 2
1
P ( )P ( )n nx x dx 




1
2

2
1

( 1) P ( ) P ( )n nn x x dx


  

Using orthogonality relation of Legendre polynomials one gets
1

2
1 1

1
(2 3) (2 1) P ( )P ( )n nn n x x x dx



 


    = 
2 ( 1)

2 1
n n

n



1
2

1 1
1

P ( )P ( )n nx x x dx


 

 =

2 ( 1)
(2 1)(2 3)(2 1)

n n
n n n


  

9. Squaring the recurrence relation (2n + 1) xPn (x) = (n + 1) Pn + 1 (x) + nPn – 1 (x) and integrating
between the limits –1 to 1, one gets

1
2 2 2

1
(2 1) [P ( )]nn x x dx





  =
1

2 2
1

1
( 1) [P ( )]nn x dx



 

2n (n + 1) 
1 1

2 2
1 1 1

1 1
P ( )P ( ) [P ( )]n n nx x dx n x dx  

 

 

Using orthogonality relation of Legendre polynomials one gets

1
2 2 2

1
(2 1) [P ( )]nn x x dx





  =
2 22( 1) 2

2 3 2 1
n n
n n



 
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1
2 2 2

1
(2 1) [P ( )]nn x x dx





  =
2 22( 1) 2

2 3 2 1
n n
n n



 

1
2 2

1
[P ( )]nx x dx




 =

2 2

2 2
2( 1) 2

(2 3)(2 1) (2 1)(2 1)
n n

n n n n



   

10. From Laplace first integral, one knows

Pn (x) = 2

0

1 ( 1) cos
n

x x d

       

Replacing n with – (n + 1) one gets

P– (n + 1) (x) =
( 1)

2

0

1 ( 1) cos
n

x x
         d 

=
( 1)

20

1 1

( 1) cos
n

d
x x




 
      



Which is the representation of legendre polynomial as per the Laplace second representation, i.e.

Pn (x) = ( 1)
20

1 1

( 1) cos
n

d
x x






      



Hence P –(n + 1) (x) = Pn (x)
LONG ANSWER QUESTIONS

1. Hint : Solve using Frobenius method and the value of  = 0 the one solution will be
y = a0 (1 + x + x2 + ......... x4) = xn a0

The second solution is given by

1

0m

y
m



 
  

= 0
0

m n

n
a x x

m





     


0
0 0

lnm n

n m

a x x x


 

 
 
 

 = 0
0

ln n

n
a x x






which is the second solution so that

y = 0
0 0

lnn n

n n
a x x x

 

 

 
 
  
 

2. Hint : 1 1P( ) and Q( )x x
x x

  ,  thus equation could be solved using Frobenius method with  = 0,
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thus similar method as adopted for problem could be applied to solve this equation.

Ans. y =
 

0 2
1

!
na x

n


3. Hint : f (x) =
0

P ( ) ,l l
n

a x dx



  then

al =
1

1

1 ( ) P ( )
2 ll f x x dx





   

=
0 1 1

1 0 0

1 10P ( ) P ( ) P ( )
2 2l l ll x dx x dx l x dx



 
            

  

a0 =

11 1

0
0 0 0

1 1 1 1P ( ) 1. ( )
2 2 2 2

x dx dx x   

a1 =

11 1 2

0 0 0

3 3 3 3P ( )
2 2 2 2 4l

xx dx x dx   

So that f (x) = 0 1
31 P ( ) P ( ) .......

2 4
x x 

4. Hint : Consider that the function f (x) defined from x = – 1 to x = 1 could be represented as
f (x) = a1P1(x) + a2P2 (x) + a3 P3 (x) .......... + al Pl (x)

Multiply the above eqn. with Pn(x) and integrate with respect to x between the limits x = – 1 to
x = 1, one gets

1

1
( ) P ( )nf x x dx




 =

1 1

1 1 2 2
1 1
P ( ) P ( ) P ( ) P ( )n na x x dx a x x dx

 

 

 

1 1

1 1
.... P ( )P ( ) ...... P ( )P ( )l l n n n na x x dx a x x dx

 

 

    
Using the orthogonality relation of Legendre's polynomials given by eqn. (3.16) one gets

1

1
( ) P ( )nf x x dx




 = a1(0) + a2(0) + ....an

2. ...... (0 )
2 1 la

n




Or an =
1

1

2 1 ( ) P ( )
2 n

n f x x dx




 
5. Hint : Solve it as Problem 3.

Ans. f (x) = 0 1 2
51 1P ( ) P ( ) P ( ) .......

4 2 16
x x x  
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6. Hint : Considering Jm(x) =
2

0

( 1)
!( )! 2

n n m

n

x
n n m

 



  
 

rearranging the terms one gets

Jm(x) =
2

0

( 1)
2 ! ( )! 2

m n n

n

x x
n n m





   
   

Let 3 ,
2

m    one gets

3
2

J ( )x
 =

3/2 2

0

( 1)
2 23! !

2

n n

n

x x

n n





   
     



Here 3 !
2

n   = 3 11
2 2

n n         

and
1
2

n    = 1
(2 3)!!

2n
n



 

Hence 3
2

J ( )x
 =

13/2 2

0

( 1) 2
2 2! (2 3) !!

n n n

n

x x
n n

 



   
    



=
1 2

0

( 1) 22 2.
!(2 3)!! 2

n n n

n

x
x x n n

 



  
  

= 2

0

( 1)2 1
2 !! (2 3) !!

n
n

n
x

x x n n






 

= 2

0

( 1) (2 1)2 1
(2 )!

n
n

n

n
x

x x n





  
 

   


=
( 1) 2

0

2 1 1 1
(2 1)! (2 )!

n n

n
x

x x n n






 
   



=
2 1 2

0

2 1( 1)
(2 1)! (2 )!

n nn

n

x x
x n x n

 



 
    



3/2J ( )x =
cos2 sin

x
x

x x
 
    



120 MATHEMATICAL PHYSICS–II (Sem. III) Hons.

7. Hint : Jm (x) =
2

0

( 1)
! ( )! 2

n n m

n

x
n n m

 



  
 

For m = 1
2

1/2J ( )x =
12
2

0

( 1)
21! !

2

n n

n

x

n n

 



  
   



1/2J ( )x =
1/2 1 2

0

( 1) 2
2 2! (2 1)!!

n n n

n

x x
n n

 



   
    



=
1/2

2

0

( 1) 2
2 (2 )! (2 1)!!

n
n

n

x x
n n





 
   



=
2 1

0

2 ( 1)
(2 1) !

nn

n

x
x n

 




 

= 2 sin x
x

8. Hint : Consider the Bessel's differential equation

2
2 2 2

2
( )

d y dy
x x x n y

dxdx
   = 0

and the solution is Jn (x) such that the above eqn. could be rewritten as

2 2 2J ( ) J ( ) ( ) J ( )n n nx x x x x n x     = 0 ...(1)

Also J ( )nx x = n Jn (x)  – x Jn+1 (x) ...(2)
Substituting (2) in (1), one gets

x2 Jn (x) + n Jn (x) – x Jn + 1 (x) + (x2 – n2) Jn (x) = 0
Or x2 Jn (x) – x Jn + 1 (x) – (n2 – x2 – n) Jn (x) = 0
Or     x2 Jn (x) = (n2 – x2 – n)  Jn (x) + x Jn + 1 (x)

10. H2(x) = 4x2 – 2, H3(x) = 8x2 – 12x




