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1.1 INTRODUCTION 

You have studied in Units 9 to 11 of the Foundation Course in Science and 

Technology (FST-1) that the universe is vast. You know that the Sun is one amongst 

billions of stars situated in as many galaxies. You have also learnt that the distances 

between planets and stars are huge, and so are their masses. For example, the distance 

between the Sun and the Earth is of the order of 1.5×10
11

m. The radius of the Sun 

itself is about 7×10
8
m, which is almost 100 times the Earth’s radius. The mass of the 

Earth is of the order of 10
24

kg and the Sun’s mass is a million times larger. The time 

scales involved are also huge. For example, the estimated age of the Sun is about  

5 billion years, compared to the lifetime of a human being, which is less than  

100 years in most cases. All these numbers are very large compared to the lengths, 

masses and time scales we encounter everyday. Obviously, we need special methods 

to measure them and represent them. 

The distances and masses of celestial objects are of fundamental interest to astronomy. 

Does a star in the night sky seem bright to us because it is closer, or is it so because it 

is intrinsically bright? The answer can be obtained if we know the distance to a star. 

You have also learnt in Unit 10 of FST-1 that the mass of a star determines how it will 

evolve. 

In this unit we introduce you to some important physical quantities of interest in 

astronomy, such as distance, size, mass, time, brightness, radiant flux, luminosity, 

temperature and their scales. You will also learn about some simple methods of 

measuring these quantities. In the next unit, you will learn about the various 

coordinate systems used to locate the positions of celestial objects. 

Objectives 

After studying this unit, you should be able to: 

• describe the distance, mass, time and temperature scales used in astronomy and 

astrophysics;  

• compare the brightness and luminosity of astronomical objects; and  

• determine the distance, size and mass of astronomical objects from given data. 
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Basics of Astronomy 
1.2 ASTRONOMICAL DISTANCE, MASS AND TIME 

SCALES  

In astronomy, we are interested in measuring various physical quantities, such as 

mass, distance, radius, brightness and luminosity of celestial objects. You have just 

learnt that the scales at which these quantities occur in astronomy are very different 

from the ones we encounter in our day-to-day lives.  

Therefore, we first need to understand these scales and define the units of 

measurement for important astrophysical quantities. 

We begin with astronomical distances. 

Astronomical Distances 

You have studied in your school textbooks that the Sun is at a distance of about         

1.5 × 10
11

m from the Earth. The mean distance between the Sun and the Earth is 

called one astronomical unit. Distances in the solar system are measured in this unit.  

Another unit is the light year, used for measuring distances to stars and galaxies.  

The parsec is a third unit of length measurement in astronomy.  

We now define them. 

 

 

Units of measurement of distances 
 

• 1 Astronomical Unit (AU) is the mean distance between the Sun and the 

Earth. 

 

  1 AU = 1.496 ×××× 10
11

m 

 

• 1 Light Year (ly) is the distance travelled by light in one year. 

 

  1 ly = 9.460 ×××× 10
15

m = 6.323 ×××× 10
4
  AU 

 

• 1 Parsec (pc) is defined as the distance at which the radius of Earth’s orbit 

subtends an angle of 1″ (see Fig.1.1). 

 

  1 pc = 3.262 ly = 2.062 ×××× 10
5
AU = 3.085 ×××× 10

16
m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1: Schematic diagram showing the definition of 1 parsec. Note that 1°°°° ≡≡≡≡ 60′′′′ and 1′′′′ = 60″″″″. 

Thus, 1″″″″ = 1/3600 degree 
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Astronomical Scales Dimensions of Astronomical Objects 

The sizes of stars or stellar dimensions are usually measured in units of solar radius 

RΘ. For example, Sirius (yqC/kd), the brightest star in the sky, has radius 2RΘ. The 

radius of the star Aldebaran (jksfg.kh) in Taurus is 40RΘ and that of Antares (T;s"Bk) in 

Scorpius is 700 RΘ. 

 

   Unit of measurement of size 

                 1 solar radius, RΘΘΘΘ = 7 ×××× 10
8
m 

 

Mass 

Stellar masses are usually measured in units of solar mass MΘ. We know that            

MΘ = 2 × 10
30 

kg. For example, the mass of our galaxy is ~ 10
11

 MΘ. The mass of a 

globular cluster is of the order of 10
5
 − 10

6
 MΘ. S. Chandrasekhar showed (Unit 11) 

that the mass of a white dwarf star cannot exceed 1.4 MΘ. This is called the 

Chandrasekhar limit. 

 

                 Unit of measurement of mass  

            1 solar mass MΘΘΘΘ = 2 ×××× 10
30

 kg 

 

Time Scales 

The present age of the Sun is about 5 billion years. It has been estimated that it would 

live for another 5 billion years in its present form. The age of our galaxy may be 

around 10 billion years. Various estimates of the age of the universe itself give a 

figure between 12 and 16 billion years. On the other hand, if the pressure inside a star 

is insufficient to support it against gravity, then it may collapse in a time, which may 

be measured in seconds, rather than in millions of years. 

In Table 1.1, we list the distances, sizes and masses of some astronomical objects. 

Table 1.1: Distance, radii and masses of astronomical objects 

 Distance Radius Mass Remarks 

Sun 1 AU 1 RΘ 1 MΘ − 

Earth − 0.01 RΘ 10
−6

 MΘ − 

Jupiter 4 AU 

(5 AU from 

the Sun) 

0.1 RΘ 10
−3

 MΘ Largest planet 

Proxima 

Centauri 

1.3 pc 0.15 RΘ 0.12 MΘ Nearest star 

Sirius A 2.6 pc 2 RΘ 3 MΘ Brightest star 

Sirius B 2.6 pc 0.02 RΘ 1 MΘ First star identified 

as white dwarf 

Antares 150 pc 700 RΘ 15 MΘ Super giant star 
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Basics of Astronomy You may like to express the distances and sizes of some astronomical objects in 

various units introduced here. 

SAQ 1 

a) Express the distance between Jupiter and Sun in parsecs, and the distance between 

the Earth and the Sun in light years. 

b) Express the radius of the Earth in units of RΘ. 

Next time when you look at the familiar stars in the night sky, you will have some 

idea of how far these are from us, and also how massive they are.  

An important problem in astronomy is to find out how much energy is emitted by 

celestial objects. It is expressed in terms of the luminosity and is related to the radiant 

flux and brightness of the object. You may have noticed that some stars in the night 

sky appear bright to us, some less bright and others appear quite faint. How do we 

estimate their real brightness? Let us find out. 

1.3 BRIGHTNESS, RADIANT FLUX AND LUMINOSITY  

It is a common experience that if we view a street lamp from nearby, it may seem 

quite bright. But if we see it from afar, it appears faint. Similarly, a star might look 

bright because it is closer to us. And a really brighter star might appear faint because it 

is too far. We can estimate the apparent brightness of astronomical objects easily, but, 

if we want to measure their real or intrinsic brightness, we must take their distance 

into account. The apparent brightness of a star is defined in terms of what is called 

the apparent magnitude of a star. 

Apparent Magnitude 

In the second century B.C., the Greek astronomer Hipparchus was the first astronomer 

to catalogue stars visible to the naked eye. He divided stars into six classes, or 

apparent magnitudes, by their relative brightness as seen from Earth. He numbered 

the apparent magnitude (m) of a star on a scale of 1 (the brightest) to 6 (the least 

bright). This is the scale on which the apparent brightness of stars, planets and other 

objects is expressed as they appear from the Earth. The brightest stars are assigned 

the first magnitude (m = 1) and the faintest stars visible to the naked eye are 

assigned the sixth magnitude (m = 6).  

 

Apparent Magnitude  

Apparent magnitude of an astronomical object is a measure of how 

bright it appears. According to the magnitude scale, a smaller 

magnitude means a brighter star. 

 

The magnitude scale is actually a non-linear scale. What this means is that a star, two 

magnitudes fainter than another, is not twice as faint. Actually it is about 6.3 times 

fainter. Let us explain this further. 

The response of the eye to increasing brightness is nearly logarithmic. We, therefore, 

need to define a logarithmic scale for magnitudes in which a difference of 5 

magnitudes is equal to a factor of 100 in brightness. On this scale, the brightness 

ratio corresponding to 1 magnitude difference is 100
1/5

 or 2.512. 

Therefore, a star of magnitude 1 is 2.512 times brighter than a star of magnitude 2. 

Spend 

10 min. 
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Astronomical Scales It is (2.512)
2
 = 6.3 times brighter than a star of magnitude 3.  

How bright is it compared to stars of magnitude 4 and 5?  

It is (2.512)
3
 = 16 times brighter than a star of magnitude 4. 

And (2.512)
4
 = 40 times brighter than a star of magnitude 5. 

As expected, it is 2.512
5
 = 100 times brighter than a star of magnitude 6. 

For example, the pole star (Polaris, Dhruva) has an apparent magnitude +2.3 and the 

star Altair has apparent magnitude 0.8. Altair is about 4 times brighter than Polaris. 

Mathematically, the brightness b1 and b2 of two stars with corresponding magnitudes 

m1 and m2 are given by the following relations. 

 

 Relationship between brightness and apparent magnitude 
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1

2
1021 log5.2
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b
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In Table 1.2, we give the brightness ratio for some magnitude differences. 

Table 1.2: Brightness ratio corresponding to given magnitude difference 

Magnitude Difference Brightness Ratio 

0.0 1.0 

0.2 1.2 

1.0 2.5 

1.5 4.0 

2.0 6.3 

2.5 10.0 

3.0 16.0 

4.0 40.0 

5.0 100.0 

7.5 1000.0 

10.0 10000.0 

Modern astronomers use a similar scale for apparent magnitude. With the help of 

telescopes, a larger number of stars could be seen in the sky. Many stars fainter than 

the 6
th
 magnitude were also observed. Moreover, stars brighter than the first 

magnitude have also been observed.  

Thus a magnitude of zero or even negative magnitudes have been assigned to extend 

the scale. A star of −1 magnitude is 2.512 times brighter than the star of zero 

magnitude. The brightest star in the sky other than the Sun, Sirius A, has an apparent 

magnitude of − 1.47.  
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Basics of Astronomy The larger magnitude on negative scale indicates higher brightness while the 

larger positive magnitudes indicate the faintness of an object.  

The faintest object detectable with a large modern telescope in the sky currently is of 

magnitude m = 29.  

Therefore, the Sun having the apparent magnitude m = − 26.81, is 10
22

 times brighter 

than the faintest object detectable in the sky.  

In the following table we list the apparent magnitudes of some objects in the night 

sky. 

Table 1.3: Apparent magnitudes of some celestial objects 

Object Indian Name Apparent Magnitude 

Sun Surya −26.81 

Full Moon Chandra −12.73 

Venus Shukra −4.22 

Jupiter Guru −2.60 

Sirius A Vyadha −1.47 

Canopus Agastya −0.73 

α-Centauri  −0.10 

Betelgeuse Ardra +0.80 

Spica Chitra +0.96 

Polaris Dhruva +2.3 

Uranus Varuna +5.5 

Sirius B  +8.68 

Pluto  +14.9 

Faintest Star 

(detected by a modern 

telescope) 

 +29 

Let us now apply these ideas to a concrete example. 

Example 1: Comparison of Brightness 

Compare the brightness of the Sun and α-Centauri using the apparent magnitudes 

listed in the Table 1.3. 

Solution 

From Table 1.3, mSun − mαC = − 26.81 − (− 0.10) = −26.71. Therefore, using            

Eq. (1.2), we obtain 

 7.105/)71.26( 10100 −−α ==
Sun

C

b

b
 

or 

 7.1010=
αC

Sun

b

b
, i.e. the Sun is about 10

11
 times brighter than α-Centauri. 

You may now like to solve a problem based on what you have studied so far. 
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Astronomical Scales SAQ 2 

a) The apparent magnitude of the Sun is − 26.81 and that of the star Sirius is − 1.47. 

Which one of them is brighter and by how much? 

b) The apparent magnitudes of the stars Arcturus and Aldebaran are 0.06 and 0.86, 

respectively. Calculate the ratio of their brightness. 

The apparent magnitude and brightness of a star do not give us any idea of the total 

energy emitted per second by the star. This is obtained from radiant flux and the 

luminosity of a star.  

 

     Luminosity and Radiant Flux 

The luminosity of a body is defined as the total energy radiated by it per unit 

time.  

Radiant flux at a given point is the total amount of energy flowing through per 

unit time per unit area of a surface oriented normal to the direction of 

propagation of radiation.  

 

The unit of radiant flux is erg s
−1

 cm
−2

 and that of luminosity is erg s
−1

. 

In astronomy, it is common to use the cgs system of units. However, if you wish to 

convert to SI units, you can use appropriate conversion factors. 

Note that here the radiated energy refers to not just visible light, but includes all 

wavelengths. 

The radiant flux of a source depends on two factors:  

(i) the radiant energy emitted by it, and  

(ii) the distance of the source from the point of observation.  

Suppose a star is at a distance r from us. Let us draw an imaginary sphere of radius r 

round the star. The surface area of this sphere is 4π r
2
. Then the radiant flux F of the 

star, is related to its luminosity L as follows:  

  
24 r

L
F

π
=

      (1.3) 

The luminosity of a stellar object is a measure of the intrinsic brightness of a star. It is 

expressed generally in the units of the solar luminosity, LΘ, where 

 13326 serg104W104 −
Θ ×=×=L   

For example, the luminosity of our galaxy is about 10
11

 LΘ. 

Now, the energy from a source received at any place, determines the brightness of the 

source. This implies that F is related to the brightness b of the source: the brighter the 

source, the larger would be the radiant flux at a place. Therefore, the ratio of 

brightness in Eq. (1.2) can be replaced by the ratio of radiant flux from two objects at 

the same place and we have  

 
5/)(

1

2 21100
mm

F

F −=  (1.4) 

Spend 

10 min. 
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Basics of Astronomy You know from Eq. (1.3) that the flux received at a place also depends on its distance 

from the source. Therefore, two stars of the same apparent magnitude may not be 

equally luminous, as they may be located at different distances from the observer: A 

star’s apparent brightness does not tell us anything about the luminosity of the star. 

We need a measure of the true or intrinsic brightness of a star. Now, we could easily 

compare the true brightness of stars if we could line them all up at the same distance 

from us (see Fig. 1.2). With this idea, we define the absolute magnitude of a star as 

follows: 

 

 Absolute Magnitude 

 

The absolute magnitude, M, of an astronomical object is defined as its 

apparent magnitude if it were at a distance of 10 pc from us.  

 

 

 

 

 

 

 

 

 

 

 

Fig.1.2: Absolute magnitude of astronomical objects 

Let us now relate the absolute magnitude of a star to its apparent magnitude. Let us 

consider a star at a distance r pc with apparent magnitude m, intrinsic brightness or 

luminosity L and radiant flux F1. Now when the same star is placed at a distance of   

10 pc from the place of observation, then its magnitude would be M and the 

corresponding radiant flux would be F2. From Eq. (1.4), we have 

 5/)(

1

2 100 Mm

F

F −=  (1.5) 

Since the luminosity is constant for the star, we use Eq. (1.3) to write 

 

2

1

2

pc 10

pc 








=

r

F

F
 (1.6) 

Using Eq. (1.6) in Eq. (1.5), we get the difference between the apparent magnitude 

(m) and absolute magnitude (M ).  
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Astronomical Scales It is a measure of distance and is called the distance modulus (see Fig. 1.3). 

 

  

 Distance modulus 

 5log5
pc10

pc
log5 1010 −=








=− r

r
Mm  (1.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.3: Star cluster showing distance modulus as a measure of distance. For the star farther away, 

m = 12.3, M = 2.6, r = 871 pc. For the closer star, m = 8.0, M = 5.8,  r = 28 pc 

 

We can also relate the absolute magnitudes of stars to their luminosities. From            

Eq. (1.3), we know that the ratio of radiant flux of two stars at the same distance 

from the point of observation is equal to the ratio of their luminosities. Thus, if M1 

and M2 are the absolute magnitudes of two stars, using Eq. (1.5), we can relate their 

luminosities to M1 and M2. 

Relationship between Luminosity and Absolute Magnitude 

 
5/)(

1

2 21100
MM

L

L −=  (1.8) 

     or 

 







=−

1

2
1021 log5.2

L

L
MM  (1.9) 

Thus, the absolute magnitude of a star is a measure of its luminosity, or intrinsic 

brightness. 

Often if we know what kind of star it is, we can estimate its absolute magnitude. We 

can measure its apparent magnitude (m) directly and solve for distance using           

Eq. (1.7). For example, the apparent magnitude of Polaris (pole star) is +2.3. Its 

absolute magnitude is −4.6 and it is 240 pc away. The apparent magnitude of Sirius A 

is −1.47, its absolute magnitude is +1.4 and it is at a distance of 2.7 pc. 

You may now like to stop for a while and solve a problem to fix these ideas. 

 

SAQ 3 

a) The distance modulus of the star Vega is −0.5. At what distance is it from us? 

b) If a star at 40 pc is brought closer to 10 pc, i.e., 4 times closer, how bright will it 

appear in terms of the magnitude? 

Spend 

5 min. 

Farther away 

Closer 
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Basics of Astronomy We now discuss some simple methods of measuring astronomical distances, sizes, 

masses and temperatures. 

1.4 MEASUREMENT OF ASTRONOMICAL 
QUANTITIES 

Since the brightness of heavenly objects depends on their distances from us, the 

measurement of distance is very important in astronomy. You must have measured the 

lengths of several objects in your school and college laboratories. But how do we 

measure astronomical distances? Obviously, traditional devices like the metre stick or 

measuring tapes are inadequate for such measurements. Other less direct ways need to 

be used. We now discuss some common methods of measuring astronomical 

distances. Since stars have been studied most extensively, we will focus largely on 

them in our discussion. 

1.4.1 Astronomical Distances 

You may be familiar with the method of trigonometric parallax. To get an idea of 

what it is, perform the following activity.  

Activity 1: Trigonometric Parallax 

Extend your arm and hold your thumb at about one foot or so in front of your eyes. 

Close your right eye and look at your thumb with your left eye. Note its position 

against a distant background. Now close your left eye and look at your thumb with 

your right eye. Do you notice that the position of the thumb has shifted with respect to 

the background? Your thumb has not moved. However, since you have looked at it 

from different point (left and right eyes), it seems to have shifted. The shift in the 

apparent position of the thumb can be represented by an angle θ (Fig. 1.4). 

Parallax is the apparent change in the position of an object due to a change in the 

location of the observer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.4: Parallax angle and baseline 

We call θ/2, the parallax angle. The distance b between the points of observation (in 

this case your eyes), is called the baseline. From simple geometry, for small 

angles, ,
2 d

b
=

θ
 where d is the distance from the eyes to the thumb. 

θ 

b 

d 
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Astronomical Scales The parallax method can be used to measure the distances of stars and other objects in 

the sky. The principle of the method is similar to the one used in finding the height of 

mountain peaks, tall buildings, etc. 

Let us now find out how this method can be used to measure astronomical distances. 

Stellar Parallax 

For measuring the distance of a star, we must use a very long baseline. Even for 

measuring the distance to the nearest star, we require a baseline length greater than the 

Earth’s diameter. This is because the distance of the star is so large that the angle 

measured from two diametrically opposite points on the Earth will differ by an 

amount which cannot be measured. Therefore, we take the diameter of the Earth’s 

orbit as the baseline, and make two observations at an interval of six months (see 

Fig. 1.5). 

One half of the maximum change in angular position (Fig. 1.5) of the star is defined as 

its annual parallax. From Fig. 1.5, the distance r of the star is given by 

 θ= tan
r

dSE  (1.10a) 

where dSE is the average distance between the Sun and the Earth. Since the angle θ is 

very small, tan θ ≅ θ, and we can write 

 
θ

= SEd
r  (1.10b) 

Remember that this relation holds only when the parallax angle θθθθ is expressed in 

radians. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.5: Stellar parallax 

Since, dSE = 1 AU, we have 

 
θ

=
AU

r
1

 (1.10c) 

r 

dSE 
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Basics of Astronomy If we measure θ in arc seconds, then the distance is said to be in parsecs.  

 

One parsec is the distance of an object that has a parallax of one second of an 

arc (1″″″″).  

 

The nearest star Proxima Centauri has a parallax angle 0.77 ″. Thus its distance is  

1.3 pc. Since the distance is proportional to 1/θ, the more distant a star is, the  

smaller is its parallax.  

In Table 1.4 we give the parallax angles and distances of some stars. 

Table 1.4: Parallaxes and distances of some bright stars 

Star θθθθ (in arc-seconds) distance (r pc) 

α-CMa 0.375 2.67 

αCMi 0.287 3.48 

αAquila 0.198 5.05 

αTauri 0.048 20.8 

αVirginis 0.014 71.4 

αScorpii 0.008 125 

Note that the angle θ cannot be measured precisely when the stellar object is at a large 

distance. Therefore, alternative methods are used to determine distances of stellar 

objects.  

You could now try an exercise to make sure you have grasped the concept of parallax. 

SAQ 4 

a) The parallax angles of the Sun’s neighbouring stars (in arc-seconds) are given 

below. Calculate their distances. 

Star Parallax 

Alpha Centauri 0.745 

Barnard’s star 0.552 

Altair 0.197 

Alpha Draco 0.176 

b) A satellite measures the parallax angle of a star as 0.002 arc-second. What is the 

distance of the star? 

You have just learnt that the parallax method helps us in finding the distances to 

nearby stars. But how can we find out which stars are nearby? We can do this by 

observing the motion of stars in the sky over a period of time. 

Proper Motion 

All celestial objects, the Sun, the Moon, stars, galaxies and other bodies are in relative 

motion with respect to one another. Part of their relative motion is also due to   the 

Earth’s own motion. However, the rate of change in the position of a star is very slow. 

It is not appreciable in one year or even in a decade. For example, if we photograph a 

small area of the sky at an interval of 10 years, we will find that some of the stars in 

the photograph have moved very slightly against the background objects (Fig.1.6). 

 

Spend 

10 min. 
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Astronomical Scales  

 

 

 

 

 

 

 

 

 

                    Fig.1.6: Motion of a star with respect to distant background objects 

The motion of a star can be resolved along two directions: 

i) Motion along the line of sight of the observer, (either towards or away from the 

observer) is called the radial motion. 

ii) Motion perpendicular to the line of sight of the observer is called proper motion 

(see Fig. 1.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.7: Radial and proper motion of a star 

Radial motion causes the spectral lines of a star to shift towards red (if the motion is 

away from the observer) or towards blue (if the motion is towards the observer). This 

shift is the well-known Doppler shift. The proper motion is very slow. It is measured 

over an interval of 20 to 30 years. It is expressed in arc seconds per year. The average 

proper motion for all naked eye stars is less than 0.1 arc second/yr.  

The proper motion is denoted by µ. For a star at a distance r from the Earth it is 

related to its transverse velocity as follows: 

 proper motion = 
star  theof distance

 velocitytransverse
 

or                     
r

vθ=µ , (1.11a) 

where vθ is the transverse velocity. 

Hence, 

 rv µ=θ  (1.11b) 

Space  

motion 

Radial  

motion 
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Basics of Astronomy If µ is measured in units of arc-seconds per year and r in pc, the transverse velocity is 

given by 

 rv µ=−
θ 74.4)skm( 1  (1.11c) 

If we add the radial velocity vector and the proper motion vector, we obtain the space 

velocity of a star (Fig.1.7). 

We can locate stars that are probably nearby by looking for stars with large proper 

motions (see Fig. 1.8a). Proper motion of a star gives us statistical clues to its 

distance. If we see a star with a small proper motion, it is most likely to be a distant 

star. However, we cannot be absolutely certain since it could also be a nearby star 

moving directly away from us or toward us (see Fig. 1.8b).  

 

 

 

 

 

 

 

 

 

 

 

 

                                      

               

Fig.1.8: a) If two stars have the same space velocity and move perpendicular to the line of sight, the 

one with the larger proper motion will be nearer; b) Two stars at the same distance with 

the same velocity may have different proper motions, if one moves perpendicular to the 

line of sight and the other is nearly parallel to the line of sight 

We know that the Sun itself is not stationary. The space velocity vector of a star must 

be corrected by subtracting from it the velocity vector of the Sun.  

The space velocity of a star corrected for the motion of the Sun is termed as the 

peculiar velocity of the star.  

The peculiar velocities of stars are essentially random and their typical magnitude is 

such that in a time of about 10
6
 years the shape of the present constellations will 

change completely and they would not be recognisable (Fig. 1.9). 

 

 

 

 

 

 

 

 

 

 

Fig.1.9: Change in the shape of the Big Dipper due to peculiar velocities 

You may now like to solve a problem based on these concepts. 

 

 

(a) (b) 

            100,000 years ago                     Present             100,000 years from now 
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Astronomical Scales SAQ 5 

The star η CMa is at a distance of 800 pc. If the proper motion of the star is 0.008″/yr, 

calculate its transverse velocity in km s
−1

. 

So far you have learnt how we can find distances of stars. In astronomy, it is equally 

important to know the sizes of stars. Are they all the same size, or are some of them 

smaller or larger than the others? Let us now find out how stellar radii may be 

measured. 

1.4.2 Stellar Radii 

There are several ways of measuring the radii of stars. Here we describe two methods:  

• the direct method, and  

• the indirect method. 

Direct Method 

We use this method to measure the radius of an object that is in the form of a disc. In 

this method, we measure the angular diameter and the distance of the object from the 

place of observation (see Fig. 1.10).  

 

 

 

 

 

 

 

 

 

 

Fig.1.10: Direct method 

If θ (rad) is the angular diameter and r is the distance of the object from the observer 

then the diameter of the stellar object will be 

 D = θ × r (1.12) 

This method is useful for determining the radii of the Sun, the planets and their 

satellites. Since stars are so far that they cannot be seen as discs even with the largest 

telescopes, this method cannot be used to find their radii. For this we use other 

methods. 

In Table 1.5 we give the radius of some stars. 

Table 1.5: Radius of some stars 

Star θθθθ (in arc seconds) Radius (in RΘ) 

α Tau 0.020 48 

α Ori 0.034 214 

α Sco 0.028 187 

The luminosity of a star can also reveal its size since it depends on the surface area 

and temperature of star. This provides a basis for the indirect method of determining 

stellar radii. 

 

Spend 

2 min. 
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To obtain stellar radii, we can also use Stefan-Boltzmann law of radiation  

 F = σ T
4
 (1.13) 

where F is the radiant flux from the surface of the object, σ, Stefan’s constant and T, 

the surface temperature of the star. You have learnt in Sec. 1.3 that the luminosity L of 

a star is defined as the total energy radiated by the star per second. Since 4π R
2
 is the 

surface area, we can write  

 FRL
24π=   

where R is the radius of the star. If the star’s surface temperature is T, using             

Eq. (1.13), we obtain 

 424 TRL σπ=  (1.14) 

The knowledge of L and T gives R. 

Now let us consider two stars of radii R1 and R2 and surface temperatures T1 and T2, 

respectively. The ratio of luminosities of these two stars will be 
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 (1.15) 

But from Eq. (1.8), we have 
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where M1  and M2  are the absolute magnitudes. Therefore, from Eqs. (1.15) and 

(1.16), we get 
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Using Eq. (1.17) let us now determine the ratio of radii of Sirius A and Sirius B.  

Example 2: Determining stellar radii 

The surface temperatures of Sirius A and Sirius B are found to be equal. The absolute 

magnitude of Sirius B is larger than that of Sirius A by 10. Thus, M1 − M2 = −10 and 

we have 

 R2 = 0.01 × R1 

Thus the radius of Sirius A is 100 times that of Sirius B. 

You may like to attempt an exercise now. 

SAQ 6 

The luminosity of a star is 40 times that of the Sun and its temperature is twice as 

much. Determine the radius of the star. 

Mass is also a fundamental property of a star, like its luminosity and its radius. 

Unfortunately, mass of a single star cannot be found directly. If, however, two stars 

revolve round each other, it is possible to estimate their masses by the application of 

Kepler’s laws. 

 

Spend 

5 min. 
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Astronomical Scales 1.4.3 Masses of Stars 

Two stars revolving around each other form a binary system. Fortunately, a large 

fraction of stars are in binary systems and therefore their masses can be determined. 

Binary stars can be of three kinds: 

1. Visual binary stars: These stars can be seen moving around each other with the 

help of a telescope. If both the stars have comparable masses, then both revolve 

around their common centre of mass in elliptic orbits.  If, however, one is much 

more massive than the other, then the less massive star executes an elliptic orbit 

around the more massive star (Fig.1.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.11: Orbit of visual binary stars 

2. Spectroscopic binary stars: The nature of these stars being binary is revealed by 

the oscillating lines in their spectra. Consider the situation in Fig.1.12a. Here star 

1 is moving towards the observer and star 2 is moving away from the observer. 

The spectral lines of star 1 are, therefore, shifted towards blue region from their 

original position due to Doppler Effect. The lines of star 2 are shifted towards red. 

Half a period later, star 1 is moving away from the observer and star 2 is moving 

towards the observer (Fig.1.12b). Now the spectral lines of the two stars are 

shifted in the directions opposite to the earlier case. In this way the spectral lines 

oscillate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.12: Spectroscopic binary stars 
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Basics of Astronomy Observations of oscillating lines indicate that the stars are binary stars. If only one 

of the stars is bright, then only one set of oscillating lines is observed. If both the 

stars are bright, then two sets of oscillating lines are seen. 

3. Eclipsing binary stars: If the orbits of two stars are such that the stars pass in 

front of each other as seen by an observer (Fig.1.13), then the light from the group 

dips periodically. The periodic dips reveal not only the binary nature of the stars, 

but also give information about their luminosities and sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.13: Eclipsing binary stars 

Now suppose M1 and M2 are the masses of the two stars and a is the distance between 

them, then we can write Kepler’s third law as 

  ( ) 3
212

2

4
aMM

GP
=+

π
 (1.18) 

where P is the period of the binary system and G is the constant of gravitation. This 

relation gives us the combined mass of the two stars. However, if the motion of both 

the stars around the common centre of mass can be observed, then we have 

  2211 aMaM =  (1.19) 

where 1a  and 2a are distances from the centre of mass. Then both these equations 

allow us to estimate the masses of both the stars.  

Masses of stars are expressed in units of the solar mass, MΘ = 2 × 10
30

 kg. Most stars 

have masses between 0.1 MΘ and 10 MΘ. A small fraction of stars may have masses of 

50 MΘ or 100 MΘ. 

So far we have discussed the ways of measuring stellar parameters such as distance, 

luminosity, radii and mass. Stellar temperature is another important property of a star. 

1.4.4 Stellar Temperature 

The temperature of a star can be determined by looking at its spectrum or colour. The 

radiant flux (Fλ) at various wavelengths (λ) is shown in Fig.1.14. This figure is quite 

similar to the one obtained for a black body at a certain temperature. Assuming the 

star to be radiating as a black body, it is possible to fit in a Planck’s curve to the 

observed data at temperature T. This temperature determines the colour of the star. 
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Astronomical Scales  

 

 

 

 

 

 

 

Fig.1.14: Total energy flux at different wavelengths. 

The temperature of a star (corresponding to a black body) may be estimated using 

Wien’s law: 

 λmaxT = 0.29 cm K (1.20) 

Such a temperature is termed as surface temperature, Ts. In general it is difficult to 

define the temperature of a star. For instance the temperature obtained from line 

emission is indicative of temperature from a region of a star where these lines are 

formed. Similarly the effective temperature of a star corresponds to the one obtained 

using Stefan-Boltzman law, i.e., F = .4
eTσ  

In Table 1.6 we give the range of values of stellar parameters of interest in astronomy 

such as mass, radius, luminosity and stellar temperature. 

Table 1.6: Range of Stellar Parameters 

Stellar Parameters Range 

Mass 0.1 − 100 MΘ 

Radius 0.01* − 1000 RΘ 

Luminosity 10
−5

 − 10
5
 LΘ 

Surface Temperature 3000 − 50,000 K 

*It is difficult to put any lower limit on the radii of stars. As you will learn later, a neutron star has a 

radius of only 10 km. The radius of a black hole cannot be defined in the usual sense. 

We can find various empirical relationships among different stellar parameters, e.g., 

mass, radius, luminosity, effective temperatures, etc. Observations show that the 

luminosity of stars depends on their mass. We find that the larger the mass of a star, 

the more luminous it is. For most stars, the mass and luminosity are related as 
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 (1.21) 

In this unit we have introduced you to a number of astronomical quantities and 

described some simple ways of measuring them. We now summarise the contents of 

this unit. 

1.5 SUMMARY 

• The astronomical units of distance, size, mass and luminosity are defined as 

follows: 

− 1 astronomical unit (AU) is the mean distance between the Sun and the 

Earth. 1 AU = 1.496 × 10
11

m. 

− 1 light year (ly) is the distance travelled by light in one year.                             

1 ly = 9.4605 × 10
15

m = 6.32 × 10
4
 AU. 

T 

E
λ

   

λmax  λ 
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Basics of Astronomy − 1 parsec (pc) is defined as the distance at which the radius of Earth’s orbit 

subtends an angle of 1″. 1 pc = 3.262 ly = 2.06 × 10
5
AU = 3.084 × 10

16
m. 

− 1 solar radius RΘ = 7 × 10
8 

m. 

− 1 solar mass MΘ = 2 × 10
30

 kg. 

− 1 solar luminosity LΘ = 4 × 10
26

 W. 

• Apparent magnitude of an astronomical object is a measure of how bright it 

appears. Its absolute magnitude is defined as its apparent magnitude if it were at 

a distance of 10 pc from us. 

• The difference in apparent and absolute magnitude is called the distance modulus 

and is a measure of the distance of an astronomical object: 

 







=−
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r
Mm   

• Radiant flux is the total amount of energy flowing per unit time per unit area 

oriented normal to the direction of its propagation. The luminosity of a body is 

defined as the total energy radiated per unit time by it.  

• Brightness and radiant flux of an object are related to its apparent magnitude as 

follows: 
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• The absolute magnitude and luminosity are related as follows: 
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• If θ is the parallax of an object in arc seconds, then its distance in parsecs is given 

by 

 
θ

=
AU1

r  

• The motion of an object can be resolved into two components: radial motion and 

proper motion. The proper motion µ of a star is related to its transverse velocity 

vθ as follows: 

 

 
r

vθ=µ  

where r is its distance. 

• Stellar radii are related to the absolute magnitudes and temperatures of stars: 
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Astronomical Scales • The masses M1 and M2 of stars in a binary system can be estimated from the 

following relations: 

 ( ) 3
212

2

4
aMM

GP
=+

π
 

 2211 aMaM =  

where P is the time period of the binary system, G the constant of gravitation, a 

the distance between them and a1, a2, their distances from the centre of mass, 

respectively.  

• The temperature of a star can be estimated by fitting observed data to Planck’s 

black body radiation curve or using Wein’s law: cm29.0max =λ T  

The temperature T of a star can also be estimated from Stefan-Boltzmann law:  

 4
TF σ= . 

1.6 TERMINAL QUESTIONS           Spend 30 min. 

1. The apparent magnitude of full moon is − 12.5 and that of Venus at its brightest is 

− 4.0. Which is brighter and by how much? 

2. The apparent magnitude of the Sun is − 26.8. Find its absolute magnitude. 

Remember that the distance between the Sun & the Earth is 1.5 × 10
13

 cm. 

3. After about 5 billion years the Sun is expected to swell to 200 times its present 

size. If its temperature becomes half of what it is today, find the change in its 

absolute magnitude. 

4. The mass of star Sirius is thrice that of the Sun. Find the ratio of their luminosities 

and the difference in their absolute magnitudes. Taking the absolute magnitude of 

the Sun as 5, find the absolute magnitude of Sirius. 

1.7 SOLUTIONS AND ANSWERS 

Self Assessment Questions (SAQs) 

 

1. a) Jupiter is 5 AU from the Sun. 

   1 pc = 2.06 × 10
5
 AU       

   5 AU = 2.43 × 10
−5

 pc 

  Distance between Earth and the Sun = 1 AU.   

   1 ly = 6240 AU   

   1 AU = 1.6 × 10
−4

 ly  

 b) The radius of the Earth is 0.01 RΘ . 

 

2. a) The Sun is brighter 

   mSun − mSi = − 26.81 − (− 1.47)   = − 25.34  
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b
 = 1.38 × 10

10
 

  The Sun is about 10
10

 times brighter than Sirius. 

 b)  5/)86.006.0(

2

1
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b

b
 = 100

+.80/5
 = (10)

0.32 
 = 2.09 

3. a)  m − M =  − 0.5 = 5 log10 
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  It will appear 16 times brighter, which corresponds to m = 3 from Table 1.2. 

4. a) 
θ

=
AU1

r  pc ;  

Alpha Centauri 1.34 pc;  

Barnard’s star   1.81 pc;    

Altair                5.07 pc;  

Alpha Draco     5.68 pc 

 b) Distance = 500 pc 

5.  vθ = 4.74 µ r = 30.34 km s
−1

  

6.  M1 − M2 = 40 
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Astronomical Scales Terminal Questions 

1. Apparent magnitude of moon is lower (larger negative number), than that of 

Venus. Therefore, moon is brighter than Venus.  

Moreover, 
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mm

b

b −−=  

            )0.45.12(4.010 +−−=   4.35.84.0 1010 == −−     .105.2 3×=  

2. The relation between apparent magnitude m and absolute magnitude M is 

 M = m − 5 log r + 5 

 where the distance r is in parsec. Distance of the Sun in parsec is                            

1.5 × 10
13

/3 × 10
18

 = 5 × 10
−6

. So, 

 M = − 26.8 − 5 (log 5 − 6) + 5 = − 26.8 − 5 log 5 + 30 + 5 

     = 8.4 − 3.5 = 4.9  

3. According to Eq. (1.17) 
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 where M1 is the present absolute magnitude of the Sun. Therefore, 

  






 ×
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16

200200
log5.221 MM  

                   = 2.5 log (2500) = 2.5 × 3.4 = 8.5 

So, the absolute magnitude of the Sun will decrease by 8.5 and it will, therefore, 

become much more luminous. 

4. Using Eq. (1.21) 

 5.3Sirius
)3(=
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L
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)(4.05.3 10)3( SiriusMM −Θ=  

 where MΘ and MSirius are absolute magnitudes of the Sun and Sirius. 

 So,  (MΘ − MSirius) = 2.5 log (46.8) 

                              = 2.5 × 1.7 = 4.25. 

  ∴ MSirius = 5 − 4.25 = 0.75. 


