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4.1 INTRODUCTION 

So far in this block we have provided the basic information which is useful in 

astronomy. You have learnt about astronomical quantities of interest, various 

coordinate systems, astronomical instruments and techniques. We now turn our 

attention to astrophysics. The aim of astrophysics is to apply principles of physics to 

understand and explain the behaviour of various astronomical systems.  

There are certain physical principles and concepts which are used in astrophysics so 

universally that it is worthwhile to discuss them before we begin studying specific 

astronomical systems. We have decided to put together some such basic physical 

principles in this Unit. You must have already learnt many of these principles in your 

other physics courses. Now you will learn how these can be applied to astrophysical 

systems. 

Let us consider some issues which are of universal concern in astrophysics. We know 

that gravitation is the dominant force in virtually any astrophysical setting. Since 

gravitation is always attractive, it must be balanced in some way in a system which is 

not shrinking. We shall discuss a very general and powerful principle called the virial 

theorem, which helps us understand how gravitation is balanced in astrophysical 

systems.  

Another topic of importance in astrophysics is the interaction of radiation with 

matter. Astrophysics is a very special science in which we cannot do experiments 

with our systems (stars, galaxies, etc.) in our laboratories. Virtually everything we 

know about these systems is learnt by analysing the radiation reaching us from these 

systems. If we want to make inferences about the systems which emitted the radiation 

or through which the radiation passed, then we need to understand how matter and 

radiation interact with each other. Many astronomical systems like stars emit radiation 

simply because they are hot. So we often need to apply various principles of thermal 

physics to understand how matter in these systems behaves. Therefore, we plan to 

recapitulate some of the important results of systems in thermodynamic equilibrium 

and then develop the theory of transfer of radiation through matter. 

Objectives 

After studying this unit, you should be able to: 

• apply virial theorem to simple astrophysical systems; 
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Physical Principles • identify the situations in astrophysics to which Newton’s theory of gravitation or 

general theory of relativity can be applied; 

• determine the specific intensity, energy density, radiant flux and radiation, 

pressure for a given radiation field; and 

• solve the radiative transfer equation for simple cases and interpret the results. 

Study Guide 

In this unit, we will be using certain concepts discussed in various units of the physics 

electives PHE-01 entitled ‘Elementary Mechanics’ (Unit 10), PHE-06 entitled 

‘Thermodynamics and Statistical Mechanics (Unit 9), and PHE-11 entitled ‘Modern 

Physics’ (Unit 9). Please keep these units handy for ready reference.  

4.2 GRAVITATION IN ASTROPHYSICS 

In your elementary physics courses, you must have learnt about two important long-

range forces, whose range of influence extends to infinity. These are the gravitational 

force and the electromagnetic force. The electromagnetic force can be attractive or 

repulsive depending on the nature of charges. So, if a system has equal amounts of 

positive and negative charges, and if there are no relative motions between these two 

types of charges, then electromagnetic forces are screened off. That is, the system 

does not produce a large-scale electromagnetic field. On the other hand, gravitation is 

always attractive and cannot be screened off. So it is the dominant force acting over 

the entire universe.  

Since gravitation is always attractive, a natural question to ask is: Why do the celestial 

objects not shrink in size? Obviously, it has to be balanced in a system which is not 

shrinking in size (such as a star or a galaxy). We shall now use Newtonian theory of 

gravitation to discuss an important theorem (virial theorem) which tells us how this 

balancing takes place. Then we shall briefly consider whether Newtonian theory of 

gravitation is adequate in astrophysics or whether we have to apply a more complete 

theory of gravitation − the general theory of relativity due to Einstein. 

4.2.1 Virial Theorem 

Why is our solar system not shrinking in size? We shall analyse this problem in the 

non-inertial frame of reference attached to a planet. From Unit 10 of the course 

PHE-01 entitled ‘Elementary Mechanics’, you know the answer: the Sun’s 

gravitational attraction on a planet is balanced by the centrifugal force due to the 

orbital motion of the planet. Let M and m be the masses of the Sun and a planet in the 

solar system. For simplicity, if we assume the planet to go in a circular orbit of radius 

r with speed v, then the force balance equation in the given non-inertial frame of 

reference is 
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=  

We can rewrite this equation in the form 

 0
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1
2 2 =−









r

GMm
mv  (4.1) 

Now note that the gravitational potential energy of the system (the Sun and the planet) 

is 

 ,
r

GMm
EG −=  
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Basics of Astronomy whereas the kinetic energy of the system is 

 2

2

1
mvEK =  

if the Sun is assumed to be at rest. We can now rewrite Eq. (4.1) in the following form 

 02 =+ GK EE  (4.2) 

This is the virial theorem for a planet going around the Sun. 

What is the significance of this result? This tells us that the gravitational potential 

energy and the kinetic energy of a system will have to be of the same order if 

gravitation is to be balanced by motion. We have proved virial theorem for the simple 

case of a planet going around the Sun in a circular orbit. However, Eq. (4.2) can be 

proved quite generally for a system in which gravitation is balanced by motions such 

that the system is not shrinking in size. The motions needs not be circular, but can be 

of any type. For example, inside a star, gravity is balanced by thermal motions of its 

particles (atoms, electrons, ions). Even in this situation, Eq. (4.2) can be shown to 

hold provided we take the total kinetic energy of all the particles in the star for EK. If a 

galaxy or a star cluster is not shrinking in size, the total kinetic energy EK of the stars 

in it should be related to the total gravitational potential energy EG by Eq. (4.2).  

 

 

 

 

 

 

 

 

 

Fig.4.1: Spiral galaxies 

In a type of galaxy known as spiral galaxy, stars seem to be moving in nearly circular 

orbits. However, in typical star clusters and in galaxies known as elliptical galaxies, 

stars move randomly. Due to these random motions, the stars do not fall to the centre 

due to gravitation. Do you feel puzzled by the idea that random motions can balance 

gravitation? To understand this concept, consider the air around you. Earth’s gravity is 

pulling all the molecules of the air. Then why are not all molecules settling on the 

floor of the room due to this attraction? It is the random motion of the molecules 

which prevents this from happening.  

Deriving the virial theorem Eq. (4.2) for a completely general situation is a very 

mathematically involved problem. It is beyond the scope of this elementary course. So 

let us apply the virial theorem in a simple situation so that you feel comfortable with 

it. 

Example 1: Estimating the average temperature in stellar interior 

A star (we have the Sun in mind) has a mass of 10
33

g and a radius of 10
11

cm. Make an 

order-of-magnitude estimate of the average temperature in the interior of the star. 

Solution 

Since this is an order of magnitude estimate, we shall take the virial theorem to imply 

that the potential and the kinetic energies are approximately equal. In c.g.s. units, we 

Fig.4.2: The Sun 
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Physical Principles take the following approximate values of various physical constants: gravitational 

constant G ≈ 10
−7

, Boltzmann constant kB ≈ 10
−16

, mass of hydrogen atom mH ≈ 10
−24

. 

The gravitational potential at the surface of the star has the magnitude GM/R. The 

approximate gravitational potential energy of the star is given by multiplying this by 

M, which is 
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Now we need to equal the total kinetic energy to this. Now, suppose that the star is 

made up of hydrogen. Then, the star consists of about M/mH particles. Each of them 

has kinetic energy of order kBT. Therefore, the total kinetic energy of the star is 
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If this is equated to 10
48

 erg, then we obtain the temperature of the star as 

 T ≈ 10
7
 K 

Note that detailed calculations suggest a temperature of about 15 million degrees at 

the centre of the Sun. The above order of magnitude estimate thus provides a fairly 

good estimate of the average temperature inside a star.  

You may now like to solve a problem to fix these ideas. 

SAQ 1 

A globular cluster of stars has about a million stars. The stars inside such a cluster of 

radius 10
20

 cm have random velocities of order 10
6
 cm s

−1
. Estimate the mass of the 

star cluster and the number of stars in it. Take the mass of a star to be about 10
33

g. 

Hint: The mass of the cluster is Nm, where N is the number of stars in the cluster. 

Now, equate the total K.E. of the cluster to its P.E. 

After Newton formulated his theory of universal gravitation, for more than two 

centuries it was regarded as a supreme example of a successful physical theory. 

However, in 1915, Einstein showed that this theory was incomplete and formulated 

his new theory of gravitation known as general relativity. In this section, we 

investigate the situations in which Newton’s theory may have to be replaced by the 

general theory of relativity. 

4.2.2 Newton versus Einstein 

We now know that Newton’s theory is only an approximation. But it is such an 

exceptionally good approximation in most circumstances that we do not need general 

relativity at all. Only when the gravitational field is sufficiently strong, we have to 

apply general relativity. Although we shall not discuss general relativity in this 

elementary course, we would like to point out when you can safely use Newtonian 

theory and when general relativity is needed. 

Even people without any technical knowledge of general relativity now-a-days have 

heard of black holes. These are objects with gravitational fields so strong that even 

light cannot escape. Let us try to find out when this happens. Newtonian theory does 

not tell us how to calculate the effect of gravitation on light. So let us figure out when 

a particle moving with speed of light c will get trapped, according to Newtonian 

theory. Suppose we have a spherical mass M of radius r and a particle of mass m is 

Spend  

10 min. 
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Basics of Astronomy ejected from its surface with speed c. The gravitational potential energy of the particle 

is 

 
r

GMm
−  

If we use the non-relativistic expression for kinetic energy for a crude estimate (we 

should actually use special relativity for a particle moving with c!), then the total 

energy of the particle is 

 
r

GMm
mcE −= 2

2

1
 

Newtonian theory tells us that the particle will escape from the gravitational field if E 

is positive and will get trapped if E is negative. In other words, the condition of 

trapping is 

 0
2

1 2 <−
r

GMm
mc  

or 

 1
2

2
>

rc

GM
 (4.3) 

It turns out that more accurate calculations using general relativity give exactly the 

same condition (4.3) for light trapping, which we have obtained here by crude 

assumptions.  

 General relativity is needed when the factor  

  
rc

2GM
f

2
=  (4.4) 

 is of the order unity.  

 Newtonian theory is quite adequate if f is much smaller than 1.  

 

Let us investigate the case of the Sun. 

Example 2 

Let us examine if the Newtonian theory is adequate for the Sun. 

Solution 

The Sun has mass 1.99 × 10
33

 g and radius 6.96 × 10
10

 cm. Substituting these values in 

Eq. (4.4), we get 

 f  = 4.24 × 10
−6

 << 1 

Hence, Newtonian theory is quite adequate for all phenomena in the solar system. 

Only if we want to calculate very accurate orbits of planets close to the Sun (such as 

Mercury), we have to take into consideration general relativity. 

When is general relativity applicable in the case of the Sun? We can use Eq. (4.3) to 

calculate the radius to which the solar mass has to be shrunk such that f is of order 

unity. Then the light emitted at its surface gets trapped. Why don’t you do this 

calculation yourself?  
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Calculate r for the Sun such that f ~ 1. 

You would have calculated the radius to be 3 km. Therefore, general relativity will 

apply to the Sun, once it shrinks to this size. As we shall discuss in more detail in 

Block 3, when the energy source of a star is exhausted, the star can collapse to very 

compact configurations like neutron stars or black holes. General relativity is needed 

to study such objects.  

If matter is distributed uniformly with density ρ inside radius r, then we can write 

 ρπ
3

4 3
rM =  

and Eq. (4.4) becomes 

 
2

2

3

8

c

Gr
f

ρπ
=  (4.5) 

We note that f is large when ρ is large or r is large (for given ρ). The density ρ is very 

high inside objects like neutron stars. You may ask: Can there be situations where 

general relativity is important due to large r? We know of one object with very large 

size − our universe itself. The distance to farthest galaxies is of the order 10
28

 cm. It is 

very difficult to estimate the average density of the universe accurately. Probably it is 

of the order 10
−29

g cm
−3

. You may like to substitute these values in Eq. (4.5), and 

calculate f. 

SAQ 3 

Calculate the value of f from Eq. (4.5) using the data given above for the Universe. 

The result of SAQ 3 tells us that we should use general relativity to study the 

dynamics of the whole universe. This subject is called cosmology.  

Thus, in astrophysics, we have two clear situations in which general relativity is 

very important:  

• the study of collapsed stars and  

• the study of the whole universe (or cosmology).  

In most other circumstances, we can get good results by applying Newtonian theory of 

gravitation. 

As we mentioned in the introduction, basic principles of thermal physics apply to 

many astronomical systems with high temperatures. Let us briefly revisit these 

principles. 

4.3 SYSTEMS IN THERMODYNAMIC EQUILIBRIUM 

You have learnt about thermodynamic equilibrium in the course PHE-06 entitled 

Thermodynamics and Statistical Mechanics. If a system is in thermodynamic 

equilibrium, then several important principles of physics can be applied to that 

system. Let us first recapitulate some important laws and equations, relevant for such 

systems, namely, Maxwellian velocity distribution, Boltzmann distribution law, 

Saha’s equation and Planck’s law of black body radiation. Afterwards, we shall 

discuss whether we can assume astrophysical systems to be in thermodynamic 

equilibrium and whether these principles can be applied to them. 

Spend 

2 min. 

Spend 

2 min. 
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Basics of Astronomy Maxwellian velocity distribution 

You have studied about Maxwellian velocity distribution in Unit 9 of PHE-06. 

Different particles in a gas move around with different velocities. Recall that if the gas 

is in thermodynamic equilibrium at temperature T, the number of particles per unit 

volume having speeds between v and v + dv is given by 

 dv
Tk

mv
v

Tk

m
NdN

BB
v 













−









π
π=

2
exp

2
4

2
2

2/3

 (4.6) 

where N is the number of particles per unit volume and m is the mass of each particle.  

Boltzmann and Saha Equations 

You have studied in Unit 9 of the physics elective PHE-11 entitled Modern Physics 

that a hydrogen atom has several different energy levels. It is also possible to break 

the hydrogen atom into a proton and an electron. This process of removing an electron 

from the atom is called ionisation. If a gas of hydrogen atoms is kept in 

thermodynamic equilibrium, then we shall find that a certain fraction of the atoms will 

occupy a particular energy state and also a certain fraction will be ionised. The same 

considerations hold for other gases. 

If N0 is the number density of atoms in the ground state, then the number density Ne of 

atoms in an excited state with energy E above the ground state is given by 

 







−∝
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N

N

B

e
exp

0

 (4.7) 

This is the Boltzmann distribution law. 

In 1919, the famous Indian physicist M.N. Saha derived an equation which tells us 

what fraction of a gas will be ionised at a certain temperature T and pressure p. The 

derivation of this equation involves some statistical mechanics. Here we merely quote 

the result without derivation. If nI is the number of hydrogen atoms out of which nII 

are ionised at temperature T, then Saha’s equation gives 

 ( ) 







−








=

Tk

I
Tk

h

πm
p

n

n

B
B

e
e exp

2 5/2
3/2

2
I

II
 (4.8) 

where I is the ionisation potential of hydrogen,  pe is the partial pressure of electrons,  

h is Planck’s constant and me is the mass of electron. A form convenient for 

calculation is 

 ( ) 0.48I)(5040/2.5log/log III −−= TTnpn e  

SAQ 4 

Assuming pe to be 100 dyne/cm
2
, calculate the fraction of hydrogen atoms ionised at   

T = 10,000 K. The ionisation potential of hydrogen is 13.6 eV. 

Planck’s law of blackbody radiation 

You have studied this law and its consequences in Unit 15 of PHE-06. You know that 

when radiation is in thermodynamic equilibrium with matter, it is called blackbody 

radiation. The spectral distribution of energy in blackbody radiation is given by the 

famous law derived by Planck in 1900 (see Fig. 4.3). The energy density uνdν lying in 

the frequency range between ν and ν + dν is given by 

Spend 

5 min. 
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Fig.4.3: Blackbody radiation curve 

We can now use these results to understand the interaction of matter with radiation. 

4.4 THEORY OF RADIATIVE TRANSFER 

Matter can both emit and absorb radiation. It is possible to use quantum mechanics to 

calculate the rates at which atoms emit or absorb energy. Here, however, we shall not 

do it. We would study the processes of emission and absorption by matter, by 

introducing suitable coefficients of emission and absorption. Radiative transfer is the 

name of the subject in which we study the interaction of radiation with matter having 

prescribed emission and absorption coefficients. 

Let us first consider how we can provide the mathematical description of radiation at a 

given point in space. 

4.4.1 Radiation Field 

You know that it is particularly easy to give a mathematical description of blackbody 

radiation, which is homogeneous and isotropic inside a container. Specifying the 

energy density uν associated with the frequency ν, which is given by Planck’s law  

(Eq. 4.9), more or less provides us complete information about blackbody radiation. In 

general, however, the radiation is not isotropic. When we have sunlight streaming into 

a room, we obviously have a non-isotropic situation involving the flow of radiation 

from a preferred direction. 

We now define the radiation field for a non-isotropic situation. Let us consider a small 

area dA at a point in space (Fig. 4.4). Let dEν dν be the energy of radiation passing 

through this area in time dt from the solid angle dΩ centred at θ and lying in the 

frequency range ν, ν + dν. The energy dEνdν is proportional to the area dA cosθ 

projected perpendicular to the direction of radiation, time interval dt, solid angle dΩ 

and frequency range dν. Hence we can write 

 ν= dddtdAtrIddE Ω)cosθˆ,,(ν νν n  (4.10) 
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Basics of Astronomy where n̂  is the unit vector indicating the direction from which the radiation is coming 

and N̂  is the unit vector normal to the area dA. The quantity ( )n̂,,ν trI  is called the 

specific intensity. As you can see, it is a function of position r, time t and direction 

n̂ . 

 

 

 

 

 

 

 

Fig.4.4: Illustration of specific intensity 

Radiation field 

If ( )n̂,,ν trI is specified for all directions at every point of a region at a 

time, then we say that the radiation field in that region is completely 

specified.  

 

In this elementary treatment, we shall restrict ourselves only to radiation fields which 

are independent of time. 

If we know the radiation field at a point in space we can calculate various quantities 

like radiant flux, energy density and pressure of radiation. For example, radiant 

flux is simply the total energy of radiation coming from all directions at a point per 

unit area per unit time. Hence, we simply have to divide Eq. (4.10) by dA dt and 

integrate over all solid angles to get the flux. Thus, we can define the radiant flux 

associated with frequency ν, and the total radiant flux as follows: 

 

Radiant flux in terms of specific intensity  

         The radiant flux associated with frequency ν is given by 

  ∫ Ω= dIF cosθνν  (4.11) 

 The total radiant flux is obtained by integrating over all frequencies 

  ∫ ν= dFF ν  (4.12) 

 

The pressure of the radiation field over a surface is given by the momentum 

exchanged per unit area per unit time, or momentum flux, perpendicular to that 

surface. Let us obtain an expression for momentum flux.  

You know from Unit 3 of PHE-11 that the momentum associated with a photon of 

energy dEν is dEν /c.  

Its component normal to the surface dA is dEν cosθ/c. On dividing this by dA dt, we 

get the momentum flux associated with dEν ; 

θ 

n̂  

dΩ 

dA 
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 Momentum flux = 
dtdAc

dE θcosν
 

Using Eq. (4.10), we get the expression for momentum flux in terms of specific 

intensity: 

 Ωθcos
1cos 2νν

d
c

I

dAdtc

dE
=

θ
 (4.13) 

The radiation pressure pν is obtained by integrating the momentum flux over all 

directions. 

 Radiation pressure 

 .Ωθcos
1 2

νν ∫= dI
c

p                                             (4.14) 

If the radiation field is isotropic, i.e., it is independent of θ and φ, then  

         π4Ωandθsin =ϕθ=Ω ∫ dddd . Hence, we get, 

 
c

I
d

c

I
p

ν2ν

ν
3

4π
Ωθcos == ∫  (4.15) 

We now apply these results to calculate energy density and radiation pressure. 

SAQ 5 

Perform the integration in Eq. (4.15) and verify the result. 

Example 3: Calculating energy density, specific intensity and radiation pressure 

Calculate the energy density uν of a radiation field at a point and use that expression 

of energy density to write down the specific intensity of a blackbody radiation. Show 

that the pressure due to isotropic radiation is given by 1/3 of the energy density. 

Solution 

Let us consider energy dEν of radiation associated with frequency ν as given by       

Eq. (4.10). This energy passes through area dA in time dt in the direction n̂ . Since the 

radiation traverses a distance cdt in time dt, we expect this radiation dEν to fill up a 

cylinder with base dA and length cdt in the direction n̂  during this time. Now the 

volume of this cylinder is cosθ dAcdt. Therefore, from Eq. (4.10), the energy density 

of this radiation in the solid angle dΩ is 

 Ω
cos

νν
d

c

I

dAcdt

dE
=

θ
 

To get the total energy density of radiation at a point associated with frequency ν, we 

have to integrate over all directions, so that 

 ∫ Ω= d
c

I
u

ν
ν  

For isotropic radiation 
c

I
u

ν=
4π

ν   

Spend 

5 min. 
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Basics of Astronomy Since blackbody radiation is isotropic, the specific intensity of blackbody radiation 

usually denoted by Bν (T) should be independent of direction. Hence the energy 

density of blackbody radiation is simply given by 

 Ω= ∫ d
c

TB
u

)(ν
ν  

Since Bv(T) is independent of direction, integration over all solid angles gives 4π.  

 ∴ 
c

TB
u

)(4 ν
ν

π
=  

Therefore, making use of Eq. (4.9), we now get the specific intensity of blackbody 

radiation as  
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Using Eq. (4.15), we get the radiation pressure for isotropic radiation as 

 νν
3

1
up =  

For black body radiation .
)(

3

4π ν
ν

c

TB
p =  

In astrophysics, we need to understand the interaction of matter and radiation to 

explain spectra of objects such as stars, interstellar gas clouds and galaxies. We now 

discuss the effect of matter on radiation field. 

4.4.2 Radiative Transfer Equation 

If matter is present, then in general the specific intensity of the radiation field keeps 

changing as we move along a ray path. Before we consider the effect of matter, first 

let us find out what happens to specific intensity in empty space as we move along a 

ray path. 

See Fig. 4.5. Let dA1 and dA2 be two area elements separated by a distance R and 

perpendicular to a ray path. Let Iν1 and Iν2 be the specific intensities of radiation in the 

direction of the ray path at dA1 and dA2. 

 

 

 

 

 

 

 

 

Fig.4.5: Two area elements perpendicular to a ray path 

We want to determine the amount of radiation passing through both dA1 and dA2 in 

time dt in the frequency range ν, ν + dν. If dΩ2 is the solid angle subtended by dA1 at 

R 

dA1 dA2 



 

83  

Physical Principles dA2, then according to Eq. (4.10), the radiation falling on dA2 in time dt after passing 

through dA1 is 

 νΩ22ν2 ddtddAI  

From considerations of symmetry, this should also be equal to 

 νΩ11ν1 ddtddAI  

where dΩ1 is the solid angle subtended by dA2 at dA1. Equating these two expressions 

and noting that 

 
2

1
22

2
1 ,

R

dA
d

R

dA
d =Ω=Ω  

we get 

 Iν1 = Iν2 (4.16) 

In other words, in empty space the specific intensity along a ray path does not change. 

If s is the distance measured along the ray path, then we can write 

 0
ν =

ds

dI
 (4.17) 

in empty space. 

At first sight, this may appear like a surprising result. We know that the intensity falls 

off as we move further and further away from a source of radiation. Can the specific 

intensity remain constant? The mystery is cleared when we keep in mind that the 

specific intensity due to a source is essentially its intensity divided by the solid angle 

it subtends, a quantity called the surface brightness of an object. This means that the 

specific intensity is a measure of the surface brightness. As we move further away 

from a source of radiation, both its intensity and angular size falls as (distance)
2
. 

Hence the surface brightness, which is the ratio of these two, does not change.  

Let us now consider what happens if matter is present along the ray path. If matter 

emits, we expect that it will add to the specific intensity. This can be taken care of by 

adding an emission coefficient jν on the right hand side of Eq. (4.17). On the other 

hand, absorption by matter would lead to a diminution of specific intensity and the 

diminution rate must be proportional to the specific intensity itself. In other words, the 

stronger the beam, the more energy there is for absorption. Hence the absorption term 

on the right hand side of Eq. (4.17) should be negative and proportional to Iν. Thus, 

we obtain the radiative transfer equation which gives the value of specific intensity in 

the presence of matter: 

Radiative transfer equation 

  ννν
ν

α Ij
ds

dI
−=  (4.18) 

 where αν is the absorption coefficient 

The radiative transfer equation provides the basis for our understanding of interaction 

between radiation and matter. 

It is fairly trivial to solve this equation if either the emission coefficient or the 

absorption coefficient is zero. Let us consider the case of jν = 0, i.e., matter is assumed 

to absorb only but not to emit. Then Eq. (4.18) becomes 
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 νν
ν

α I
ds

dI
−=  (4.19) 

On integrating this equation over the ray path from s0 to s, we get 

 ( ) 







′′−= ∫

s

s

sdssIsI

0

ν0νν αexp)()(  (4.20) 

We will discuss below more general solutions of the radiative transfer equation. These 

solutions will provide us answers to questions such as: Why is the radiation emitted 

from nebula usually in spectral lines? Why do we see absorption lines in stellar 

spectra? 

4.4.3 Optical depth; Solution of Radiative Transfer Equation 

To obtain a general solution of the radiative transfer equation, we need to define two 

quantities, namely, the optical depth and the source function. Let us first define the 

optical depth τν through the following relation: 

 dsd νν ατ =  (4.21) 

such that the optical depth along the ray path between s0 and s becomes 

 ( )∫ ′′=
s

s

sds

0

νν ατ  (4.22) 

If matter does not emit radiation, i.e., jν = 0, it follows from Eqs. (4.20) to (4.22) that 

the specific intensity along the ray path falls as 

 ντ
ννν )0()(

−=τ eII  (4.23) 

Based on the values of τν we can define objects as optically thick or optically thin. 

Optically thick and optically thin objects 

If the optical depth τν >> 1 along a ray path through an object, then the 

object is known as optically thick.  

An object is known as optically thin if   τν << 1 for a ray path through it.  

It follows from Eq. (4.23) that for an optically thick object Iν (τν) = 0 and it 

extinguishes the light of a source behind it. What about an optically thin object? It 

does not decrease the light much. Hence the terms optically thick and optically thin 

roughly mean opaque and transparent at the frequency of electromagnetic radiation 

we are considering. 

We now define the source function 

 
ν

ν
ν
α

j
S =  (4.24) 

Dividing the radiative transfer equation Eq. (4.18) by αν and using Eqs. (4.21) and 

(4.24), we get 

 νν
ν

ν

τ
SI

d

dI
+−=  (4.25) 
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Multiplying this equation by ,

τνe  we can write it as: 

 ( ) νν τ
ν

τ
ν

ντ
eSeI

d

d
=  

Integrating this equation from optical path 0 to τν (i.e., from s0 to s along the ray 

path), we get the general solution of the radiative transfer equation: 

 

General solution of the radiative transfer equation 

 
( ) ( )∫ ′′+=

′−−− ντ

0
ννν

τττ
ννν ττ(0))(τ ννν dSeeII  (4.26) 

If matter through which the radiation is passing has constant properties, then we can 

take Sν to be constant and solve the integral in Eq. (4.26). This gives 

 )(1(0))(τ νν τ
ν

τ
ννν

−− −+= eSeII  

We are now interested in studying the emission and absorption properties of an object 

itself without a source behind it. Then we take Iν(0) = 0 and write 

 )(1)(τ ντ
ννν

−−= eSI  (4.27) 

Let us consider the cases of optically thin and thick objects.  

• Optically thin object 

For an optically thin object, τν << 1, and ντ−
e may be approximated to 1 − τν. 

Thus Eq. (4.27) becomes
 

  νννν τ)(τ SI =  

For matter with constant properties, we take τν = ανL, where L is the total length 

of the ray path. Making use of Eq. (4.24), we get the following result 

   Iν = jνL (4.28) 

• Optically thick object 

If the object is optically thick, we can neglect ντ−
e  compared to 1 in Eq. (4.27). 

Then we get the result 

   Iν = Sν (4.29) 

 Let us put these results together for ready reference. 

 

  Specific Intensity of  

  Optically thin object:    Iν = jνL 

  Optically thick object:  Iν = Sν 

We have derived two tremendously important results in Eqs. (4.28) and (4.29). To 

understand their physical significance, we have to look at some thermodynamic 

considerations. 
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Basics of Astronomy 4.4.4 Local Thermodynamic Equilibrium 

Suppose we have a box kept in thermodynamic equilibrium. If we make a small hole 

on its side, we know that the radiation coming out of the hole will be blackbody 

radiation. We have already derived the specific intensity of blackbody radiation as 

 

1
ν

exp

1ν2
)(

2

3

ν

−







=

Tk

hc

h
TB

B

 (4.30) 

The specific intensity of radiation coming out of the hole is simply 

 )(νν TBI =  (4.31) 

We now keep an optically thick object behind the hole inside the box as shown in  

Fig. 4.6. If this object is in thermodynamic equilibrium with the surroundings, then it 

will not disturb the environment and the radiation coming out of the hole will still be 

blackbody radiation, with specific intensity given by Eq. (4.31). On the other hand, we 

have seen in Eq. (4.29) that the radiation coming out of an optically thick object has 

the specific intensity equal to the source function. From Eq. (4.29) and (4.31), we 

conclude 

 )(νν TBS =  (4.32) 

when matter is in thermodynamic equilibrium.  

 

 

 

 

 

 

 

Fig.4.6:  Blackbody radiation coming out of a box with an optically thick obstacle placed behind 

the hole inside the box 

On using Eq. (4.24), we finally obtain the famous result known as Kirchoff’s law. 

Kirchoff’s law 

 )(α ννν TBj =                                                                         (4.33) 

 

Let us now stop and try to understand what we have derived. Very often matter tends 

to emit and absorb more at specific frequencies corresponding to spectral lines. Hence 

both jν and αν  are expected to have peaks at spectral lines. But, according to  

Eq. (4.33), the ratio of these coefficients should be the smooth blackbody function 

Bν(T).  

We now look at the results of Eq. (4.28) and (4.29).  

Eq. (4.28) tells us that the radiation from an optically thin source is essentially 

determined by its emission coefficient. Since the emission coefficient is expected to 

have peaks at spectral lines, we find that the emission from an optically thin system 

like a hot transparent gas is mainly in spectral lines.  

Bν (T) 
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Physical Principles On the other hand, from Eq. (4.29), the specific intensity of radiation from an 

optically thick source is its source function. This has been shown to be equal to the 

blackbody function Bν(T) in Eq. (4.31). Hence, we expect an optically thick object 

like a hot piece of iron to emit roughly like a blackbody. 

The nature of radiation from an astrophysical source crucially depends on whether the 

source is optically thin or optically thick. Emission from a tenuous nebula is usually in 

spectral lines. On the other hand, a star emits almost like a blackbody.  

Why is the radiation from a star not exactly blackbody radiation? Why do we see 

absorption lines? Recall that we have derived Eq. (4.29) by assuming the source to 

have constant properties. This is certainly not true for a star. As we go down from the 

star’s surface, temperature keeps increasing. Hence Eq. (4.29) should be only 

approximately true. It is the temperature gradient near the star’s surface which gives 

rise to the absorption lines. 

By assuming thermodynamic equilibrium, we have derived the tremendously 

important result Eq. (4.32) that the source function should be equal to the blackbody 

function Bν(T). In a realistic situation, we rarely have strict thermodynamic 

equilibrium. The temperature inside a star is not constant, but varies with its radius. In 

such a situation, will Eq. (4.32) hold? 

We have already mentioned in section 4.3 that the Maxwellian velocity distribution, 

the Boltzmann law and the Saha equation hold if the system is in thermodynamic 

equilibrium. This generally means that the temperature does not vary much over it. 

For Planck’s law also to hold, the radiation has to interact with matter efficiently.  

We note from the radiative transfer equation Eq. (4.18) that αν has the dimension of 

inverse length. Its inverse 1−
να  gives the distance over which a significant part of a 

beam of radiation would get absorbed by matter. Often this distance 1−
να  is referred to 

as the mean free path of photons, since this is the typical distance a photon is 

expected to traverse freely before interacting with an atom.  

The smaller the value of 1−
να , the more efficient is the interaction between matter and 

radiation. If 1−
να  is sufficiently small such that the temperature can be taken as 

constant over such distances, then we expect Planck’s law of blackbody radiation to 

hold. In other words, if both 1−
να  and the mean free path of particles are small 

compared to the length over which the temperature varies appreciably, then all the 

important laws of thermodynamic equilibrium hold.  

Such a situation is known as Local Thermodynamic Equilibrium, which is abbreviated 

as LTE. Inside a star, we expect LTE to be a very good approximation and we can 

assume Eq. (4.32) to hold when we solve radiative transfer equation inside the star. In 

the outer atmosphere of a star, LTE may fail and it often becomes necessary to 

consider departures from LTE when studying the transfer of radiation there. 

In this unit, we have discussed some basic principles of physics applicable to 

astrophysical systems. We now summarise the contents of this unit. 

4.5 SUMMARY 

• The virial theorem, states that the gravitational potential energy EG and kinetic 

energy EK of a system are of the same order 

 02 =+ GK EE  
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Basics of Astronomy • Newton’s theory of gravitation is generally adequate. However, if the quantity 

rc

GM
f

2

2
= becomes of order unity in a system, then the general theory of 

relativity has to be used instead of Newton’s theory. 

• For astrophysical systems in thermodynamic equilibrium, the following results 

hold: 

Maxwellian velocity distribution 
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 Saha’s equation 
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 Planck’s law of black body radiation 
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• The energy of radiation lying in the frequency range ν and ν + dν passing 

through an area dA cosθ in time dt from the solid angle dΩ centred at θ is given 

by 

 νΩ)cosθˆ,,(ν νν dddtdAtrIddE n=  

 where Iν is called the specific intensity. 

• The radiant flux of a time independent radiation field is defined in terms of 

specific intensity Iν as 

 ∫ Ω= dIF cosθνν  

• The radiation pressure is given by 

 ∫= Ωθcos
1 2

νν dI
c

p  

• The interaction of matter with radiation is given by the radiative transfer 

equation 

 ννν
ν

α Ij
ds

dI
−=  

 The general solution of this equation is given as 
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Physical Principles • The optical depth of an object along a ray path between points s0 and s is given 

by  

 ( )∫ ′′=
s

s

sds

0

νν ατ  

• Kirchoff’s law for a system in thermodynamic equilibrium is given as 

 )(α ννν TBj =  

4.6 TERMINAL QUESTIONS                                  Spend 30 min. 

1. Suppose the Sun contracts at a uniform rate to half its present size in 10
7
 yr. 

Suppose that all its energy is radiated from its surface. Calculate the luminosity of 

the Sun during the contracting phase. 

2. Determine the size to which the Earth must shrink so that the use of Einstein’s 

theory of gravitation becomes necessary. 

3. Calculate the optical depth at which the specific intensity reduces to one-

hundredth of its original value in a system in which no emission of radiation is 

taking place. Perform your calculation at a given frequency. Would the system be 

optically thick or thin? 

4.7 SOLUTIONS AND ANSWERS 

Self Assessment Questions (SAQs) 

1. We need to equate the total kinetic energy of the globular star cluster with its 

gravitational potential energy. If the cluster has N stars with masses of individual 

stars of order m, and velocities of order v, the total kinetic of the star cluster is 

about 

  Nmv
2
. 

 The total gravitational potential energy is 

  
R

NmG
2)(

, 

 On equating these two, we have 

  ,2

R

GNm
v ≈  

 from which 

  
( )

g10
10

1010 39
7

20262

≈
×

≈≈
−G

Rv
Nm  

This is the mass of the cluster. Taking the masses of stars to be of order 10
33

g        

(~ mass of the Sun), the cluster has about million stars in it.  
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     ~ 0.6, which is of the order 1. 
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Terminal Questions 

1. Gravitational potential energy of a star of radius 
r

GM
r

2

=  

 For the Sun of radius 
2

ΘR ,  gravitational P. E. 
Θ

=
R

GM 22
 

 Present gravitational potential energy of the Sun = 
ΘR

GM 2

 

  ∴ Energy radiated from its surface    
ΘΘΘ

=−=
R

GM

R

GM

R

GM 2222
 

  (Remember that when the star contacts, gravitational energy is released) 
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  ∴ 
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 (T is the time of contraction) 
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          (in terms of present solar luminosity) 
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3. Eq. (4.23) ⇒ 
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 Since  1ν >>τ , the system is optically thick. 


